2,641 research outputs found

    Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a novel target for liver cancer therapy

    Get PDF
    Poster AbstractsThis journal suppl. entitled: The International Liver Congress™ 2011 Abstract Book 46 annual meeting of the European Association for the Study of the LiverBACKGROUND AND AIMS: The mortality rate of HCC is high due to tumor recurrence and lack of effective treatment. By proteomics analysis of matched tumor and non-tumor tissues, mortalin was identified as a marker for hepatocellular carcinoma (HCC) metastasis and recurrence, suggesting its tight link in HCC development and recurrence. The aim of this study is to examine the role of mortalin in hepatocarcinogenesis. METHODS: The mortalin expression ...postprin

    T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells

    Get PDF
    Memory T cells are composed of effector, central, and memory stem cells. Previous studies have implicated that both T-bet and Eomes are involved in the generation of effector and central memory CD8 T cells. The exact role of these transcription factors in shaping the memory T cell pool is not well understood, particularly with memory stem T cells. Here, we demonstrate that both T-bet or Eomes are required for elimination of established tumors by adoptively transferred CD8 T cells. We also examined the role of T-bet and Eomes in the generation of tumor-specific memory T cell subsets upon adoptive transfer. We showed that combined T-bet and Eomes deficiency resulted in a severe reduction in the number of effector/central memory T cells but an increase in the percentage of CD62LhighCD44low Sca-1+ T cells which were similar to the phenotype of memory stem T cells. Despite preserving large numbers of phenotypic memory stem T cells, the lack of both of T-bet and Eomes resulted in a profound defect in antitumor memory responses, suggesting T-bet and Eomes are crucial for the antitumor function of these memory T cells. Our study establishes that T-bet and Eomes cooperate to promote the phenotype of effector/central memory CD8 T cell versus that of memory stem like T cells. © 2013 Li et al

    Ion-selective microporous polymer membranes with hydrogen-bond and salt-bridge networks for aqueous organic redox flow batteries.

    Get PDF
    Redox flow batteries (RFBs) have great potential for long-duration grid-scale energy storage. Ion conducting membranes are a crucial component in RFBs, allowing charge-carrying ions to transport while preventing the cross-mixing of redox couples. Commercial Nafion membranes are widely used in RFBs, but their unsatisfactory ionic and molecular selectivity as well as high costs limit the performance and the widespread deployment of this technology. To extend the longevity and reduce the cost of RFB systems, inexpensive ion-selective membranes are highly desired that concurrently deliver low ionic resistance and high selectivity towards redox-active species. In this work, high-performance RFB membranes are fabricated from blends of carboxylate- and amidoxime-functionalized polymers of intrinsic microporosity (PIMs) that exploit the beneficial properties of both polymers. The enthalpy-driven formation of cohesive interchain interactions, including hydrogen bonds and salt bridges, facilitates the microscopic miscibility of the blends, while ionizable functional groups within the sub-nanometer pores allow optimization of membrane ion transport functions. The resulting microporous membranes demonstrate fast cation conduction with low crossover of redox-active molecular species, enabling improved power ratings and reduced capacity fade in aqueous RFBs using anthraquinone and ferrocyanide as redox couples. This article is protected by copyright. All rights reserved

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    Ab initio alpha-alpha scattering

    Get PDF
    Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.Comment: 6 pages, 6 figure

    Ge quantum dot arrays grown by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface: nucleation, morphology and CMOS compatibility

    Get PDF
    Issues of morphology, nucleation and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (<600 deg C) and high (>600 deg. C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts---pyramids and wedges---are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.Comment: 30 pages, 11 figure

    Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium-oxygen batteries

    Get PDF
    © 2015 Nature Publishing Group All rights reserved. Cathode catalysts are the key factor in improving the electrochemical performance of lithium-oxygen (Li-O2) batteries via their promotion of the oxygen reduction and oxygen evolution reactions (ORR and OER). Generally, the catalytic performance of nanocrystals (NCs) toward ORR and OER depends on both composition and shape. Herein, we report the synthesis of polyhedral Au NCs enclosed by a variety of index facets: cubic gold (Au) NCs enclosed by {100} facets; truncated octahedral Au NCs enclosed by {100} and {110} facets; and trisoctahedral (TOH) Au NCs enclosed by 24 high-index {441} facets, as effective cathode catalysts for Li-O2 batteries. All Au NCs can significantly reduce the charge potential and have high reversible capacities. In particular, TOH Au NC catalysts demonstrated the lowest charge-discharge overpotential and the highest capacity of ∼ 20 298 mA h g-1. The correlation between the different Au NC crystal planes and their electrochemical catalytic performances was revealed: high-index facets exhibit much higher catalytic activity than the low-index planes, as the high-index planes have a high surface energy because of their large density of atomic steps, ledges and kinks, which can provide a high density of reactive sites for catalytic reactions

    Daratumumab plus bortezomib, cyclophosphamide, and dexamethasone in Asian patients with newly diagnosed AL amyloidosis: subgroup analysis of ANDROMEDA

    Get PDF
    Subcutaneous daratumumab plus bortezomib/cyclophosphamide/dexamethasone (VCd; D-VCd) improved outcomes versus VCd for patients with newly diagnosed immunoglobulin light-chain (AL) amyloidosis in the phase 3 ANDROMEDA study. We report a subgroup analysis of Asian patients (Japan; Korea; China) from ANDROMEDA. Among 388 randomized patients, 60 were Asian (D-VCd, n = 29; VCd, n = 31). At a median follow-up of 11.4 months, the overall hematologic complete response rate was higher for D-VCd versus VCd (58.6% vs. 9.7%; odds ratio, 13.2; 95% confidence interval [CI], 3.3–53.7; P < 0.0001). Six-month cardiac and renal response rates were higher with D-VCd versus VCd (cardiac, 46.7% vs. 4.8%; P = 0.0036; renal, 57.1% vs. 37.5%; P = 0.4684). Major organ deterioration progression-free survival (MOD-PFS) and major organ deterioration event-free survival (MOD-EFS) were improved with D-VCd versus VCd (MOD-PFS: hazard ratio [HR], 0.21; 95% CI, 0.06–0.75; P = 0.0079; MOD-EFS: HR, 0.16; 95% CI, 0.05–0.54; P = 0.0007). Twelve deaths occurred (D-VCd, n = 3; VCd, n = 9). Twenty-two patients had baseline serologies indicating prior hepatitis B virus (HBV) exposure; no patient experienced HBV reactivation. Although grade 3/4 cytopenia rates were higher than in the global safety population, the safety profile of D-VCd in Asian patients was generally consistent with the global study population, regardless of body weight. These results support D-VCd use in Asian patients with newly diagnosed AL amyloidosis. ClinicalTrials.gov Identifier: NCT03201965
    corecore