358 research outputs found
Static properties of the dissipative random quantum Ising ferromagnetic chain
We study the zero temperature static properties of dissipative ensembles of
quantum Ising spins arranged on periodic one dimensional finite clusters and on
an infinite chain. The spins interact ferro-magnetically with nearest-neighbour
pure and random couplings. They are subject to a transverse field and coupled
to an Ohmic bath of quantum harmonic oscillators. We analyze the coupled system
using Monte Carlo simulations of the classical two-dimensional counterpart
model. The coupling to the bath enhances the extent of the ordered phase, as
found in mean-field spin-glasses. In the case of finite clusters we show that a
generalization of the Caldeira-Leggett localization transition exists. In the
case of the infinite random chain we study the effect of dissipation on the
transition and the Griffiths phase.Comment: 21 pages, 10 figure
Effects of dissipation on disordered quantum spin models
We study the effects of the coupling to an Ohmic quantum reservoir on the
static and dynamical properties of a family of disordered SU(2) spin models in
a transverse magnetic field using a method of direct spin summation. The
tendency to form a glassy phase increases with the strength of the coupling of
the system to the environment. We study the influence of the environment on the
features of the phase diagram of the various models as well as the stability of
the possible phases.Comment: 24 pages, 8 fig
The 3He(alpha,gamma)7Be S-factor at solar energies: the prompt gamma experiment at LUNA
The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang
nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement
of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran
Sasso underground laboratory by both the activation and the prompt gamma
detection methods. The present work reports full details of the prompt gamma
detection experiment, focusing on the determination of the systematic
uncertainty. The final data, including activation measurements at LUNA, are
compared with the results of the last generation experiments and two different
theoretical models are used to obtain the S-factor at solar energies.Comment: Accepted for publication in Nucl. Phys.
Ultra-sensitive in-beam gamma-ray spectroscopy for nuclear astrophysics at LUNA
Ultra-sensitive in-beam gamma-ray spectroscopy studies for nuclear
astrophysics are performed at the LUNA (Laboratory for Underground Nuclear
Astrophysics) 400 kV accelerator, deep underground in Italy's Gran Sasso
laboratory. By virtue of a specially constructed passive shield, the laboratory
gamma-ray background for E_\gamma < 3 MeV at LUNA has been reduced to levels
comparable to those experienced in dedicated offline underground gamma-counting
setups. The gamma-ray background induced by an incident alpha-beam has been
studied. The data are used to evaluate the feasibility of sensitive in-beam
experiments at LUNA and, by extension, at similar proposed facilities.Comment: accepted, Eur. Phys. J.
Orbital medial wall fractures: Purely endoscopic endonasal repair with polyethylene implants
Our technique couples the stronger support granted by non-resorbable materials and the minimal invasiveness of the endoscopic approach without the need for long-term nasal packing
Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy
The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a
major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted
by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis
calculations. The present work reports on a new precision experiment using the
activation technique at energies directly relevant to big-bang nucleosynthesis.
Previously such low energies had been reached experimentally only by the
prompt-gamma technique and with inferior precision. Using a windowless gas
target, high beam intensity and low background gamma-counting facilities, the
3He(alpha,gamma)7Be cross section has been determined at 127, 148 and 169 keV
center-of-mass energy with a total uncertainty of 4%. The sources of systematic
uncertainty are discussed in detail. The present data can be used in big-bang
nucleosynthesis calculations and to constrain the extrapolation of the
3He(alpha,gamma)7Be astrophysical S-factor to solar energies
Comparison of the LUNA 3He(alpha,gamma)7Be activation results with earlier measurements and model calculations
Recently, the LUNA collaboration has carried out a high precision measurement
on the 3He(alpha,gamma)7Be reaction cross section with both activation and
on-line gamma-detection methods at unprecedented low energies. In this paper
the results obtained with the activation method are summarized. The results are
compared with previous activation experiments and the zero energy extrapolated
astrophysical S factor is determined using different theoretical models.Comment: Accepted for publication in Journal of Physics
Limits on Low Energy Photon-Photon Scattering from an Experiment on Magnetic Vacuum Birefringence
Experimental bounds on induced vacuum magnetic birefringence can be used to
improve present photon-photon scattering limits in the electronvolt energy
range. Measurements with the PVLAS apparatus (E. Zavattini {\it et al.}, Phys.
Rev. D {\bf77} (2008) 032006) at both nm and 532 nm lead to
bounds on the parameter {\it A}, describing non linear effects in QED, of
T @ 1064 nm and T @ 532 nm, respectively, at 95% confidence level,
compared to the predicted value of T. The
total photon-photon scattering cross section may also be expressed in terms of
, setting bounds for unpolarized light of m and m. Compared to the expected QED scattering cross
section these results are a factor of higher and represent
an improvement of a factor about 500 on previous bounds based on ellipticity
measurements and of a factor of about on bounds based on direct
stimulated scattering measurements
Sizing of integrated solar photovoltaic and electrolysis systems for clean hydrogen production
This work presents a method to design an optimised system that combines electrolysers and solar photovoltaic panels for sustainable hydrogen production. Given the daily and seasonal
variations of the electricity output vs. a stable hydrogen demand, power exchange to/from the electric grid and hydrogen storage systems are considered. The aim is to determine the optimal size of the PV field, the electrolyser, and the storage, for a given hydrogen demand, by minimising the cost of the hydrogen produced
Search for low Energy solar Axions with CAST
We have started the development of a detector system, sensitive to single
photons in the eV energy range, to be suitably coupled to one of the CAST
magnet ports. This system should open to CAST a window on possible detection of
low energy Axion Like Particles emitted by the sun. Preliminary tests have
involved a cooled photomultiplier tube coupled to the CAST magnet via a
Galileian telescope and a switched 40 m long optical fiber. This system has
reached the limit background level of the detector alone in ideal conditions,
and two solar tracking runs have been performed with it at CAST. Such a
measurement has never been done before with an axion helioscope. We will
present results from these runs and briefly discuss future detector
developments.Comment: Paper submitted to the proceedings of the "4th Patras Workshop on
Axions, WIMPs and WISPs", DESY, Hamburg Site - Germany, 18-21 June 2008.
Author affiliations are reported on the title page of the paper. In version
2: 1 affiliation change, 3 references adde
- …
