1,136 research outputs found
A Historical Perspective on the Northern Maine Guide
This article traces the history of the Maine Guide in the late nineteenth through mid-twentieth centuries. It discusses how cultural changes affected the role of the guide and the services they provided
Ecological Effects of Fear: How Spatiotemporal Heterogeneity in Predation Risk Influences Mule Deer Access to Forage in a Sky‐Island System
Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands
Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems
Since the 1990's, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have used hydrochlorofluorocarbon-225 (HCFC-225), a Class II ozone-depleting substance, to safety clean and verify the cleanliness of large scale propulsion oxygen systems and associated test facilities. In 2012 through 2014, test laboratories at MSFC, SSC, and Johnson Space Center-White Sands Test Facility collaborated to seek out, test, and qualify an environmentally preferred replacement for HCFC-225. Candidate solvents were selected, a test plan was developed, and the products were tested for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Honewell Soltice (TradeMark) Performance Fluid (trans-1-chloro-3,3, 3-trifluoropropene) was selected to replace HCFC-225 at NASA's MSFC and SSC rocket propulsion test facilities
Studies of the decays D^0 \rightarrow K_S^0K^-\pi^+ and D^0 \rightarrow K_S^0K^+\pi^-
The first measurements of the coherence factor R_{K_S^0K\pi} and the average
strong--phase difference \delta^{K_S^0K\pi} in D^0 \to K_S^0 K^\mp\pi^\pm
decays are reported. These parameters can be used to improve the determination
of the unitary triangle angle \gamma\ in B^- \rightarrow
decays, where is either a D^0 or a D^0-bar meson decaying to
the same final state, and also in studies of charm mixing. The measurements of
the coherence factor and strong-phase difference are made using
quantum-correlated, fully-reconstructed D^0D^0-bar pairs produced in e^+e^-
collisions at the \psi(3770) resonance. The measured values are R_{K_S^0K\pi} =
0.70 \pm 0.08 and \delta^{K_S^0K\pi} = (0.1 \pm 15.7) for an
unrestricted kinematic region and R_{K*K} = 0.94 \pm 0.12 and \delta^{K*K} =
(-16.6 \pm 18.4) for a region where the combined K_S^0 \pi^\pm
invariant mass is within 100 MeV/c^2 of the K^{*}(892)^\pm mass. These results
indicate a significant level of coherence in the decay. In addition, isobar
models are presented for the two decays, which show the dominance of the
K^*(892)^\pm resonance. The branching ratio {B}(D^0 \rightarrow
K_S^0K^+\pi^-)/{B}(D^0 \rightarrow K_S^0K^-\pi^+) is determined to be 0.592 \pm
0.044 (stat.) \pm 0.018 (syst.), which is more precise than previous
measurements.Comment: 38 pages. Version 3 updated to include the erratum information.
Errors corrected in Eqs (25), (26), 28). Fit results updated accordingly, and
external inputs updated to latest best known values. Typo corrected in Eq(3)-
no other consequence
Representative Atmospheric Plume Development for Elevated Releases
An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption that an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression for the non-decaying tracer. If the power-law equation for the median dilution factor, Df, based on a non-decaying tracer has the general form Df=a〖×t〗^(-b) for time t after the release event, then the equation has the form Df=e^(-λt)×a×t^(-b) for a radioactive isotope, where λ is the decay constant for the isotope
Observation of the Dalitz Decay
Using 586 of collision data acquired at
GeV with the CLEO-c detector at the Cornell Electron Storage
Ring, we report the first observation of
with a significance of . The ratio of branching fractions
\calB(D_{s}^{*+} \to D_{s}^{+} e^{+} e^{-}) / \calB(D_{s}^{*+} \to D_{s}^{+}
\gamma) is measured to be , which is consistent with theoretical expectations
Updated Measurement of the Strong Phase in D0 --> K+pi- Decay Using Quantum Correlations in e+e- --> D0 D0bar at CLEO
We analyze a sample of 3 million quantum-correlated D0 D0bar pairs from 818
pb^-1 of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77
GeV, to give an updated measurement of \cos\delta and a first determination of
\sin\delta, where \delta is the relative strong phase between doubly
Cabibbo-suppressed D0 --> K+pi- and Cabibbo-favored D0bar --> K+pi- decay
amplitudes. With no inputs from other experiments, we find \cos\delta = 0.81
+0.22+0.07 -0.18-0.05, \sin\delta = -0.01 +- 0.41 +- 0.04, and |\delta| = 10
+28+13 -53-0 degrees. By including external measurements of mixing parameters,
we find alternative values of \cos\delta = 1.15 +0.19+0.00 -0.17-0.08,
\sin\delta = 0.56 +0.32+0.21 -0.31-0.20, and \delta = (18 +11-17) degrees. Our
results can be used to improve the world average uncertainty on the mixing
parameter y by approximately 10%.Comment: Minor revisions, version accepted by PR
Search for rare and forbidden decays of charm and charmed-strange mesons to final states h^+- e^-+ e^+
We have searched for flavor-changing neutral current decays and
lepton-number-violating decays of D^+ and D^+_s mesons to final states of the
form h^+- e^-+ e^+, where h is either \pi or K. We use the complete samples of
CLEO-c open-charm data, corresponding to integrated luminosities of 818 pb^-1
at the center-of-mass energy E_CM = 3.774 GeV containing 2.4 x 10^6 D^+D^-
pairs and 602 pb^-1 at E_CM = 4.170 GeV containing 0.6 x 10^6 D^*+-_s D^-+_s
pairs. No signal is observed in any channel, and we obtain 90% confidence level
upper limits on branching fractions B(D^+ --> \pi^+ e^+ e^-) < 5.9 x 10^-6,
B(D^+ --> \pi^- e^+ e^+) K^+ e^+ e^-) < 3.0 x 10^-6,
B(D^+ --> K^- e^+ e^+) \pi^+ e^+ e^-) < 2.2 x 10^-5,
B(D^+_s --> \pi^- e^+ e^+) K^+ e^+ e^-) < 5.2 x
10^-5, and B(D^+_s --> K^- e^+ e^+) < 1.7 x 10^-5.Comment: 9 pages, available through http://www.lns.cornell.edu/public/CLNS
Does the Precision of a Biological Clock Depend upon Its Period? Effects of the Duper and tau Mutations in Syrian Hamsters
Mutations which alter the feedback loops that generate circadian rhythms may provide insight into their insensitivity to perturbation robustness) and their consistency of period (precision). I examined relationships between endogenous period, activity and rest (τDD, α and ρ) in Syrian hamsters using two different mutations, duper and tau, both of which speed up the circadian clock. I generated 8 strains of hamsters that are homozygous or heterozygous for the tau, duper, and wild type alleles in all combinations. The endogenous period of activity onsets among these strains ranged from 17.94+0.04 to 24.13±0.04 h. Contrary to predictions, the variability of period was unrelated to its absolute value: all strains showed similar variability of τDD when activity onsets and acrophase were used as phase markers. The τDD of activity offsets was more variable than onsets but also differed little between genotypes. Cycle variation and precision were not correlated with τDD within any strain, and only weakly correlated when all strains are considered together. Only in animals homozygous for both mutations (super duper hamsters) were cycle variation and precision reduced. Rhythm amplitude differed between strains and was positively correlated with τDD and precision. All genotypes showed negative correlations between α and ρ. This confirms the expectation that deviations in the duration of subjective day and night should offset one another in order to conserve circadian period, even though homeostatic maintenance of energy reserves predicts that longer intervals of activity or rest would be followed by longer durations of rest or activity. Females consistently showed greater variability of the period of activity onset and acrophase, and of α, but variability of the period of offset differed between sexes only in super duper hamsters. Despite the differences between genotypes in τDD, ρ was consistently more strongly correlated with the preceding than the succeeding α
- …