65 research outputs found

    Particle Shape and Composition of NU-LHT-2M

    Get PDF
    Particle shapes of the lunar regolith simulant NU-LHT-2M were analyzed by scanning electron microscope of polished sections. These data provide shape, size, and composition information on a particle by particle basis. 5,193 particles were measured, divided into four sized fractions: less than 200 mesh, 200-100 mesh, 100-35 mesh, and greater than 35 mesh. 99.2% of all particles were monominerallic. Minor size versus composition effects were noted in minor and trace mineralogy. The two metrics used are aspect ratio and Heywood factor, plotted as normalized frequency distributions. Shape versus composition effects were noted for glass and possibly chlorite. To aid in analysis, the measured shape distributions are compared to data for ellipses and rectangles. Several other simple geometric shapes are also investigated as to how they plot in aspect ratio versus Heywood factor space. The bulk of the data previously reported, which were acquired in a plane of projection, are between the ellipse and rectangle lines. In contrast, these data, which were acquired in a plane of section, clearly show that a significant number of particles have concave hulls in this view. Appendices cover details of measurement error, use of geometric shapes for comparative analysis, and a logic for comparing data from plane of projection and plane of section measurements

    RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation

    Get PDF
    Annotation of development-dependent dimorphic genes in gonad during Day 0–12. Annotation of development-dependent significantly up- and down- regulated DEGs at FDR < 0.01 in gonadal regions incubated under MPT and FPT conditions during Day 0 to Day 12. Ordered by decreasing fold change. (XLSX 196 kb

    Perfluorinated alkyl acids and fecundity assessment in striped mullet (\u3ci\u3eMugil cephalus\u3c/i\u3e) at Merritt Island national wildlife refuge

    Get PDF
    This study investigated wild caught striped mullet (Mugil cephalus) at Merritt Island National Wildlife Refuge (MINWR) for levels of 15 perfluoroalkyl acids (PFAA) in tandem with individual fecundity measurements (Oocyte sub-stage 2 late, n=42) and oocyte reproductive stages (Stages 1–5, n=128). PFAAmeasurementswere quantified in stripedmullet liver (n=128),muscle (n=49), and gonad (n=10). No significant negative impacts of liver PFAA burden on wild-caught,mullet fecundity endpoints were observed in this study; however, changes in PFAAwere observed in the liver asmullet progressed through different sub-stages of oocyte development. Of the PFAA with significant changes by sub-stage of oocyte development, the carboxylic acids (perfluorooctanoic acid, perfluorononanoic acid, and perfluorotridecanoic acid) increased in the liver with increasing sub-stage while the sulfonic acid and its precursor (perfluorooctanesulfonic acid (PFOS) and perfluorooctanesulfonamide, respectively) decreased in the liver with increasing sub-stage of oocyte development. This is a unique find and suggests PFAA change location of compartmentalization as mullet progress towards spawning. Investigations also revealed higher than expected median muscle and gonad levels of PFOS in striped mullet collected at MINWR (9.01 ng/g and 80.2 ng/g, respectively)

    Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator

    Get PDF
    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability

    Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida

    Get PDF
    The Space Shuttle Program was one of NASAs first major undertakings to fall under the environmental impact analysis and documentation requirements of the National Environmental Policy Act of 1969 (NEPA). Space Shuttle Program activities at John F. Kennedy Space Center (KSC) and the associated Merritt Island National Wildlife Refuge (MINWR) contributed directly and indirectly to both negative and positive ecological trends in the region through the long-term, stable expenditure of resources over the 40 year program life cycle. These expenditures provided support to regional growth and development in conjunction with other sources that altered land use patterns, eliminated and modified habitats, and contributed to cultural eutrophication of the Indian River Lagoon. At KSC, most Space Shuttle Program related actions were conducted in previously developed facilities and industrial areas with the exception of the construction of the shuttle landing facility (SLF) and the space station processing facility (SSPF). Launch and operations impacts were minimal as a result of the low annual launch rate. The majority of concerns identified during the NEPA process such as potential weather modification, acid rain off site, and local climate change did not occur. Launch impacts from deposition of HCl and particulates were assimilated as a result of the high buffering capacity of the system and low launch and loading rates. Metals deposition from exhaust deposition did not display acute impacts. Sub-lethal effects are being investigated as part of the Resource Conservation and Recovery Act (RCRA) regulatory process. Major positive Space Shuttle Program effects were derived from the adequate resources available at the Center to implement the numerous environmental laws and regulations designed to enhance the quality of the environment and minimize impacts from human activities. This included reduced discharges of domestic and industrial wastewater, creation of stormwater management systems, remediation of past contamination sites, implementation of hazardous waste management systems, and creation of a culture of sustainability. Working with partners such as the USFWS and the St Johns River Water Management District (SJRWMD), wetlands and scrub restoration and management initiatives were implemented to enhance fish and wildlife populations at the Center. KSC remains the single largest preserve on the east coast of Florida in part due to NASAs commitment to stewardship. Ongoing Ecological Program projects are directed at development of information and knowledge to address future KSC management questions including the transition to a joint government and commercial launch facility, enhanced habitat management requirements for wetlands and scrub, potential impacts of emerging contaminants, and adaptation to climate change including projected sea level rise over the next 50-75 years

    Perfluorinated Alkyl Acids in Plasma of American Alligators (Alligator Mississippiensis) from Florida and South Carolina

    Get PDF
    This study aimed to quantitate fourteen perfluoroalkyl acids (PFAAs) in 125 adult American alligators at twelve sites across the southeastern US. Of those fourteen PFAAs, nine were detected in 65% - 100% of the samples: PFOA, PFNA, PFDA, PFUnA, PFDoA, PFTriA, PFTA, PFHxS, and PFOS. Males (across all sites) showed significantly higher concentrations of four PFAAs: PFOS (p = 0.01), PFDA (p = 0.0003), PFUnA (p = 0.021), and PFTriA (p = 0.021). Concentrations of PFOS, PFHxS, and PFDA in plasma were significantly different among the sites in each sex. Alligators at Merritt Island National Wildlife Refuge and Kiawah Nature Conservancy both exhibited some of the highest PFOS concentrations (medians 99.5 ng/g and 55.8 ng/g respectively) in plasma measured to date in a crocodilian species. A number of positive correlations between PFAAs and snout-vent length (SVL) were observed in both sexes suggesting PFAA body burdens increase with increasing size. In addition, several significant correlations among PFAAs in alligator plasma may suggest conserved sources of PFAAs at each site throughout the greater study area. This study is the first to report PFAAs in American alligators, reveals potential PFAA hot spots in Florida and South Carolina, and provides and additional contaminant of concern when assessing anthropogenic impacts on ecosystem health

    The dynamic floor of Yellowstone Lake, Wyoming, USA: The last 14 k.y. of hydrothermal explosions, venting, doming, and faulting

    Get PDF
    Hydrothermal explosions are significant potential hazards in Yellowstone National Park, Wyoming, USA. The northern Yellowstone Lake area hosts the three largest hydrothermal explosion craters known on Earth empowered by the highest heat flow values in Yellowstone and active seismicity and deformation. Geological and geochemical studies of eighteen sublacustrine cores provide the first detailed synthesis of the age, sedimentary facies, and origin of multiple hydrothermal explosion deposits.New tephrochronology and radiocarbon results provide a four-dimensional view of recent geologic activity since recession at ca. 15–14.5 ka of the \u3e1-km-thick Pinedale ice sheet. The sedimentary record in Yellowstone Lake contains multiple hydrothermal explosion deposits ranging in age from ca. 13 ka to ∼1860 CE. Hydrothermal explosions require a sudden drop in pressure resulting in rapid expansion of high-temperature fluids causing fragmentation, ejection, and crater formation; explosions may be initiated by seismicity, faulting, deformation, or rapid lake-level changes. Fallout and transport of ejecta produces distinct facies of subaqueous hydrothermal explosion deposits. Yellowstone hydrothermal systems are characterized by alkaline-Cl and/or vapor-dominated fluids that, respectively, produce alteration dominated by silica-smectite-chlorite or by kaolinite. Alkaline-Cl liquids flash to steam during hydrothermal explosions, producing much more energetic events than simple vapor expansion in vapor-dominated systems. Two enormous explosion events in Yellowstone Lake were triggered quite differently: Elliott’s Crater explosion resulted from a major seismic event (8 ka) that ruptured an impervious hydrothermal dome, whereas the Mary Bay explosion (13 ka) was triggered by a sudden drop in lake level stimulated by a seismic event, tsunami, and outlet channel erosion

    The post-occipital spinal venous sinus of the Nile crocodile (Crocodylus niloticus) : its anatomy and use for blood sample collection and intravenous infusions

    Get PDF
    The post-occipital sinus of the spinal vein is often used for the collection of blood samples from crocodilians. Although this sampling method has been reported for several crocodilian species, the technique and associated anatomy has not been described in detail in any crocodilian, including the Nile crocodile (Crocodylus niloticus). The anatomy of the cranial neck region was investigated macroscopically, microscopically, radiographically and by means of computed tomography. Latex was injected into the spinal vein and spinal venous sinus of crocodiles to visualise the regional vasculature. The spinal vein ran within the vertebral canal, dorsal to and closely associated with the spinal cord and changed into a venous sinus cranially in the post-occipital region. For blood collection, the spinal venous sinus was accessed through the interarcuate space between the atlas and axis (C1 and C2) by inserting a needle angled just off the perpendicular in the midline through the craniodorsal cervical skin, just cranial to the cranial borders of the first cervical osteoderms. The most convenient method of blood collection was with a syringe and hypodermic needle. In addition, the suitability of the spinal venous sinus for intravenous injections and infusions in live crocodiles was evaluated. The internal diameter of the commercial human epidural catheters used during these investigations was relatively small, resulting in very slow infusion rates. Care should be taken not to puncture the spinal cord or to lacerate the blood vessel wall using this route for blood collection or intravenous infusions.The Norwegian Council for Higher Education’s Programme for Development, Research and Education (NUFU 08/02) and the Royal Netherlands Embassy in South Africa (Prof. Nico Visser).http://www.jsava.co.zaam2014ab201
    corecore