134 research outputs found
Biosynthesis of mycobacterial arabinogalactan: identification of a novel (13)arabinofuranosyltransferase
The cell wall mycolyl-arabinogalactan-peptidoglycan complex is essential in mycobacterial species, such as Mycobacterium tuberculosis and is the target of several anti-tubercular drugs. For instance, ethambutol targets arabinogalactan biosynthesis through inhibition of the arabinofuranosyltransferases Mt-EmbA and Mt-EmbB. A bioinformatics approach identified putative integral membrane proteins, MSMEG2785 in Mycobacterium smegmatis, Rv2673 in Mycobacterium tuberculosis and NCgl1822 in Corynebacterium glutamicum, with 10 predicted transmembrane domains and a glycosyltransferase motif (DDX), features that are common to the GT-C superfamily of glycosyltransferases. Deletion of M. smegmatis MSMEG2785 resulted in altered growth and glycosyl linkage analysis revealed the absence of AG (13)-linked arabinofuranosyl (Araf) residues. Complementation of the M. smegmatis deletion mutant was fully restored to a wild type phenotype by MSMEG2785 and Rv2673, and as a result, we have now termed this previously uncharacterized open reading frame, arabinofuranosyltransferase C (aftC). Enzyme assays using the sugar donor -D-arabinofuranosyl-1-monophosphoryldecaprenol (DPA) and a newly synthesized linear (15)-linked Ara5 neoglycolipid acceptor together with chemical identification of products formed, clearly identified AftC as a branching (13) arabinofuranosyltransferase. This newly discovered glycosyltransferase sheds further light on the complexities of Mycobacterium cell wall biosynthesis, such as in M. tuberculosis and related species and represents a potential new drug target
The Astounding World of Glycans from Giant Viruses
Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed
Sensitive electrochemiluminescence (ECL) immunoassays for detecting lipoarabinomannan (LAM) and ESAT-6 in urine and serum from tuberculosis patients.
BackgroundTuberculosis (TB) infection was responsible for an estimated 1.3 million deaths in 2017. Better diagnostic tools are urgently needed. We sought to determine whether accurate TB antigen detection in blood or urine has the potential to meet the WHO target product profiles for detection of active TB.Materials and methodsWe developed Electrochemiluminescence (ECL) immunoassays for Lipoarabinomannan (LAM) and ESAT-6 detection with detection limits in the pg/ml range and used them to compare the concentrations of the two antigens in the urine and serum of 81 HIV-negative and -positive individuals with presumptive TB enrolled across diverse geographic sites.ResultsLAM and ESAT-6 overall sensitivities in urine were 93% and 65% respectively. LAM and ESAT-6 overall sensitivities in serum were 55% and 46% respectively. Overall specificity was ≥97% in all assays. Sensitivities were higher in HIV-positive compared to HIV-negative patients for both antigens and both sample types, with signals roughly 10-fold higher on average in urine than in serum. The two antigens showed similar concentration ranges within the same sample type and correlated.ConclusionsLAM and ESAT-6 can be detected in the urine and serum of TB patients, regardless of the HIV status and further gains in clinical sensitivity may be achievable through assay and reagent optimization. Accuracy in urine was higher with current methods and has the potential to meet the WHO accuracy target if the findings can be transferred to a point-of-care TB test
(1R,2R,3R,4R,5S)-2,3-Bis[(2S′)-2-acetoxy-2-phenylacetoxy]-4-azido-1-[(2,4-dinitrophenyl)hydrazonomethyl]bicyclo[3.1.0]hexane
In the title compound, C38H29N7O12, the five-membered ring adopts an envelope conformation in which the ‘flap’ is cis to the cyclopropane group. This conformation is similar to those of other bicyclo[3.1.0]hexane analogues for which crystal structures have been reported. The absolute configuration of the stereogenic centers on the cyclopentane ring, as determined by comparison with the known configurations of the stereogenic centers in the (2S)-2-acetoxy-2-phenylacetoxy groups, is 1(R), 2(R), 3(R), 4(R) and 5(S). An intramolecular N—H⋯O hydrogen bond is present
Recommended from our members
A Novel Sensitive Immunoassay Targeting the 5-Methylthio-d-Xylofuranose-Lipoarabinomannan Epitope Meets the WHO's Performance Target for Tuberculosis Diagnosis.
The only currently commercialized point-of-care assay for tuberculosis (TB) that measures lipoarabinomannan (LAM) in urine (Alere LF-LAM) has insufficient sensitivity. We evaluated the potential of 100 novel monoclonal antibody pairs targeting a variety of LAM epitopes on a sensitive electrochemiluminescence platform to improve the diagnostic accuracy. In the screening, many antibody pairs showed high reactivity to purified LAM but performed poorly at detecting urinary LAM in clinical samples, suggesting differences in antigen structure and immunoreactivity of the different LAM sources. The 12 best antibody pairs from the screening were tested in a retrospective case-control study with urine samples from 75 adults with presumptive TB. The best antibody pair reached femtomolar analytical sensitivity for LAM detection and an overall clinical sensitivity of 93% (confidence interval [CI], 80% to 97%) and specificity of 97% (CI, 85% to 100%). Importantly, in HIV-negative subjects positive for TB by sputum smear microscopy, the test achieved a sensitivity of 80% (CI, 55% to 93%). This compares to an overall sensitivity of 33% (CI, 20% to 48%) of the Alere LF-LAM and a sensitivity of 13% (CI, 4% to 38%) in HIV-negative subjects in the same sample set. The capture antibody targets a unique 5-methylthio-d-xylofuranose (MTX)-dependent epitope in LAM that is specific to the Mycobacterium tuberculosis complex and shows no cross-reactivity with fast-growing mycobacteria or other bacteria. The present study provides evidence that improved assay methods and reagents lead to increased diagnostic accuracy. The results of this work have informed the development of a sensitive and specific novel LAM point-of-care assay with the aim to meet the WHO's performance target for TB diagnosis
The N-glycan structures of the antigenic variants of chlorovirus PBCV-1 major capsid protein help to identify the virus-encoded glycosyltransferases
The chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) is a large dsDNA virus that infects the microalga Chlorella variabilis NC64A. Unlike most other viruses, PBCV-1 encodes most, if not all, of the machinery required to glycosylate its major capsid protein (MCP). The structures of the four N-linked glycans from the PBCV-1 MCP consist of nonasaccharides, and similar glycans are not found elsewhere in the three domains of life. Here, we identified the roles of three virus-encoded glycosyltransferases (GTs) that have four distinct GT activities in glycan synthesis. Two of the three GTs were previously annotated as GTs but the third GT was identified in this study. We determined the GT functions by comparing the wild-type glycan structures from PBCV-1 with those from a set of PBCV-1 spontaneous GT genes mutants resulting in antigenic variants having truncated glycan structures. According to our working model, the virus gene a064r encodes a GT with three domains: domain 1 has a β-L-rhamnosyltransferase activity, domain 2 has an α -L-rhamnosyltransferase activity and domain 3 is a methyltransferase that decorates two positions in the terminal α -L-rhamnose (Rha) unit. The a075l gene encodes a β -xylosyltransferase that attaches the distal D-xylose (Xyl) unit to the L-fucose (Fuc) that is part of the conserved N-glycan core region. Lastly, gene a071r encodes a GT that is involved in the attachment of a semiconserved element, α-D-Rha, to the same L-Fuc in the core region. Our results uncover GT activities that assemble four of the nine residues of the PBCV-1 MCP N-glycans.
Includes supplemental material
ABO(H) blood group A and B glycosyltransferases recognize substrate via specific conformational changes.
The final step in the enzymatic synthesis of the ABO(H) blood group A and B antigens is catalyzed by two closely related glycosyltransferases, an alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and an alpha-(1-->3)-galactosyltransferase (GTB). Of their 354 amino acid residues, GTA and GTB differ by only four "critical" residues. High resolution structures for GTB and the GTA/GTB chimeric enzymes GTB/G176R and GTB/G176R/G235S bound to a panel of donor and acceptor analog substrates reveal "open," "semi-closed," and "closed" conformations as the enzymes go from the unliganded to the liganded states. In the open form the internal polypeptide loop (amino acid residues 177-195) adjacent to the active site in the unliganded or H antigen-bound enzymes is composed of two alpha-helices spanning Arg(180)-Met(186) and Arg(188)-Asp(194), respectively. The semi-closed and closed forms of the enzymes are generated by binding of UDP or of UDP and H antigen analogs, respectively, and show that these helices merge to form a single distorted helical structure with alternating alpha-3(10)-alpha character that partially occludes the active site. The closed form is distinguished from the semi-closed form by the ordering of the final nine C-terminal residues through the formation of hydrogen bonds to both UDP and H antigen analogs. The semi-closed forms for various mutants generally show significantly more disorder than the open forms, whereas the closed forms display little or no disorder depending strongly on the identity of residue 176. Finally, the use of synthetic analogs reveals how H antigen acceptor binding can be critical in stabilizing the closed conformation. These structures demonstrate a delicately balanced substrate recognition mechanism and give insight on critical aspects of donor and acceptor specificity, on the order of substrate binding, and on the requirements for catalysis
Lcp1 Is a Phosphotransferase Responsible for Ligating Arabinogalactan to Peptidoglycan in Mycobacterium tuberculosis
Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has a unique cell envelope which accounts for its unusual low permeability and contributes to resistance against common antibiotics. The main structural elements of the cell wall consist of a cross-linked network of peptidoglycan (PG) in which some of the muramic acid residues are covalently attached to a complex polysaccharide, arabinogalactan (AG), via a unique α-l-rhamnopyranose–(1→3)-α-d-GlcNAc-(1→P) linker unit. While the molecular genetics associated with PG and AG biosynthetic pathways have been largely delineated, the mechanism by which these two major pathways converge has remained elusive. In Gram-positive organisms, the LytR-CpsA-Psr (LCP) family of proteins are responsible for ligating cell wall teichoic acids to peptidoglycan, through a linker unit that bears a striking resemblance to that found in mycobacterial arabinogalactan. In this study, we have identified Rv3267 as a mycobacterial LCP homolog gene that encodes a phosphotransferase which we have named Lcp1. We demonstrate that lcp1 is an essential gene required for cell viability and show that recombinant Lcp1 is capable of ligating AG to PG in a cell-free radiolabeling assay
Transition transferases prime bacterial capsule polymerization
Capsules are long-chain carbohydrate polymers that envelop the surfaces of many bacteria, protecting them from host immune responses. Capsule biosynthesis enzymes are potential drug targets and valuable biotechnological tools for generating vaccine antigens. Despite their importance, it remains unknown how structurally variable capsule polymers of Gram-negative pathogens are linked to the conserved glycolipid anchoring these virulence factors to the bacterial membrane. Using Actinobacillus pleuropneumoniae as an example, we demonstrate that CpsA and CpsC generate a poly(glycerol-3-phosphate) linker to connect the glycolipid with capsules containing poly(galactosylglycerol-phosphate) backbones. We reconstruct the entire capsule biosynthesis pathway in A. pleuropneumoniae serotypes 3 and 7, solve the X-ray crystal structure of the capsule polymerase CpsD, identify its tetratricopeptide repeat domain as essential for elongating poly(glycerol-3-phosphate) and show that CpsA and CpsC stimulate CpsD to produce longer polymers. We identify the CpsA and CpsC product as a wall teichoic acid homolog, demonstrating similarity between the biosynthesis of Gram-positive wall teichoic acid and Gram-negative capsules
A Bispecific Antibody Based Assay Shows Potential for Detecting Tuberculosis in Resource Constrained Laboratory Settings
The re-emergence of tuberculosis (TB) as a global public health threat highlights the necessity of rapid, simple and inexpensive point-of-care detection of the disease. Early diagnosis of TB is vital not only for preventing the spread of the disease but also for timely initiation of treatment. The later in turn will reduce the possible emergence of multi-drug resistant strains of Mycobacterium tuberculosis. Lipoarabinomannan (LAM) is an important non-protein antigen of the bacterial cell wall, which is found to be present in different body fluids of infected patients including blood, urine and sputum. We have developed a bispecific monoclonal antibody with predetermined specificities towards the LAM antigen and a reporter molecule horseradish peroxidase (HRPO). The developed antibody was subsequently used to design a simple low cost immunoswab based assay to detect LAM antigen. The limit of detection for spiked synthetic LAM was found to be 5.0 ng/ml (bovine urine), 0.5 ng/ml (rabbit serum) and 0.005 ng/ml (saline) and that for bacterial LAM from M. tuberculosis H37Rv was found to be 0.5 ng/ml (rabbit serum). The assay was evaluated with 21 stored clinical serum samples (14 were positive and 7 were negative in terms of anti-LAM titer). In addition, all 14 positive samples were culture positive. The assay showed 100% specificity and 64% sensitivity (95% confidence interval). In addition to good specificity, the end point could be read visually within two hours of sample collection. The reported assay might be used as a rapid tool for detecting TB in resource constrained laboratory settings
- …