14 research outputs found

    Phytonutrient bioaccessibility and metabolism in vitro and in vivo

    Get PDF

    Regional diets targeting gut microbial dynamics to support prolonged healthspan

    Get PDF
    In the last 150 years, we have seen a significant increase in average life expectancy, associated with a shift from infectious to non-communicable diseases. The rising incidence of these diseases, for which age is often the largest risk factor, highlights the need for contemporary societies to improve healthy ageing for their growing silver generations. As ageing is an inevitable, non-reversing and highly individualised process, we need to better understand how non-genetic factors like diet choices and commensal gut microbes can modulate the biology of ageing. In this review, we discuss how geographical and ethnic variations influence habitual dietary patterns, nutrient structure, and gut microbial profiles with potential impact on the human healthspan. Several gut microbial genera have been associated with healthy elderly populations but are highly variable across populations. It seems unlikely that a universal pro-longevity gut microbiome exists. Rather, the optimal microbiome appears to be conditional on the microbial functionality acting on regional- and ethnicity-specific trends driven by cultural food context. We also highlight dietary and microbial factors that have been observed to elicit individual and clustered biological responses. Finally, we identify next generation avenues to modify otherwise fixed host functions and the individual ageing trajectory by manipulating the malleable gut microbiome with regionally adapted, personalised food intervention regimens targeted at prolonging human healthspan

    Diet-Related Metabolites Associated with Cognitive Decline Revealed by Untargeted Metabolomics in a Prospective Cohort

    Get PDF
    Scope: Untargeted metabolomics may reveal preventive targets in cognitive aging, including within the food metabolome. Methods and results: A case-control study nested in the prospective Three-City study includes participants aged &65 years and initially free of dementia. A total of 209 cases of cognitive decline and 209 controls (matched for age, gen- der, education) with slower cognitive decline over up to 12 years are contrasted. Using untargeted metabolomics and bootstrap-enhanced penalized regression, a baseline serum signature of 22 metabolites associated with subsequent cognitive decline is identified. The signature includes three coffee metabolites, a biomarker of citrus intake, a cocoa metabolite, two metabolites putatively derived from fish and wine, three medium-chain acylcarnitines, glycodeoxycholic acid, lysoPC(18:3), trimethyllysine, glucose, cortisol, creatinine, and arginine. Adding the 22 metabolites to a reference predictive model for cognitive decline (conditioned on age, gender, education and including ApoE-Δ4, diabetes, BMI, and number of medications) substantially increases the predictive performance: cross-validated Area Under the Receiver Operating Curve = 75% [95% CI 70-80%] compared to 62% [95% CI 56-67%]. Conclusions: The untargeted metabolomics study supports a protective role of specific foods (e.g., coffee, cocoa, fish) and various alterations in the endogenous metabolism responsive to diet in cognitive aging

    Apolipoprotein E and sex modulate fatty acid metabolism in a prospective observational study of cognitive decline

    Get PDF
    Background: Fatty acids play prominent roles in brain function as they participate in structural, metabolic and signaling processes. The homeostasis of fatty acids and related pathways is known to be impaired in cognitive decline and dementia, but the relationship between these metabolic disturbances and common risk factors, namely the ɛ4 allele of the apolipoprotein E (ApoE-ɛ4) gene and sex, remains elusive. Methods: In order to investigate early alterations associated with cognitive decline in the fatty acid-related serum metabolome, we here applied targeted metabolomics analysis on a nested case-control study (N=368), part of a prospective population cohort on dementia. Results: When considering the entire study population, circulating levels of free fatty acids, acyl-carnitines and pantothenic acid were found to be increased among those participants who had greater odds of cognitive decline over a 12-year follow-up. Interestingly, stratified analyses indicated that these metabolomic alterations were specific for ApoE-ɛ4 non-carriers and women. Conclusions: Altogether, our results highlight that the regulation of fatty acids and related metabolic pathways during ageing and cognitive decline depends on complex inter-relationships between the ApoE-Δ4 genotype and sex. A better understanding of the ApoE-ɛ4 and sex dependent modulation of metabolism is essential to elucidate the individual variability in the onset of cognitive decline, which would help develop personalized therapeutic approaches

    Early signature in the blood lipidome associated with subsequent cognitive decline in the elderly: A case-control analysis nested within the Three-City cohort study

    Get PDF
    Background Brain lipid metabolism appears critical for cognitive aging, but whether alterations in the lipidome relate to cognitive decline remains unclear at the system level. Methods We studied participants from the Three-City study, a multicentric cohort of older persons, free of dementia at time of blood sampling, and who provided repeated measures of cognition over 12 subsequent years. We measured 189 serum lipids from 13 lipid classes using shotgun lipidomics in a case-control sample on cognitive decline (matched on age, sex and level of education) nested within the Bordeaux study center (discovery, n = 418). Associations with cognitive decline were investigated using bootstrapped penalized regression, and tested for validation in the Dijon study center (validation, n = 314). Findings Among 17 lipids identified in the discovery stage, lower levels of the triglyceride TAG50:5, and of four membrane lipids (sphingomyelin SM40:2,2, phosphatidylethanolamine PE38:5(18:1/20:4), ether-phosphatidylethanolamine PEO34:3(16:1/18:2), and ether-phosphatidylcholine PCO34:1(16:1/18:0)), and higher levels of PCO32:0(16:0/16:0), were associated with greater odds of cognitive decline, and replicated in our validation sample. Interpretation These findings indicate that in the blood lipidome of non-demented older persons, a specific profile of lipids involved in membrane fluidity, myelination, and lipid rafts, is associated with subsequent cognitive decline. Funding The complete list of funders is available at the end of the manuscript, in the Acknowledgement section

    Interlaboratory Coverage Test on Plant Food Bioactive Compounds and their Metabolites by Mass Spectrometry-Based Untargeted Metabolomics.

    Get PDF
    Bioactive compounds present in plant-based foods, and their metabolites derived from gut microbiota and endogenous metabolism, represent thousands of chemical structures of potential interest for human nutrition and health. State-of-the-art analytical methodologies, including untargeted metabolomics based on high-resolution mass spectrometry, are required for the profiling of these compounds in complex matrices, including plant food materials and biofluids. The aim of this project was to compare the analytical coverage of untargeted metabolomics methods independently developed and employed in various European platforms. In total, 56 chemical standards representing the most common classes of bioactive compounds spread over a wide chemical space were selected and analyzed by the participating platforms (n = 13) using their preferred untargeted method. The results were used to define analytical criteria for a successful analysis of plant food bioactives. Furthermore, they will serve as a basis for an optimized consensus method

    Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds

    Get PDF
    Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29–103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03–0.76 min and interval width of 0.33–8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet’s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation

    Regional diets targeting gut microbial dynamics to support prolonged healthspan

    No full text
    In the last 150 years, we have seen a significant increase in average life expectancy, associated with a shift from infectious to non-communicable diseases. The rising incidence of these diseases, for which age is often the largest risk factor, highlights the need for contemporary societies to improve healthy ageing for their growing silver generations. As ageing is an inevitable, non-reversing and highly individualised process, we need to better understand how non-genetic factors like diet choices and commensal gut microbes can modulate the biology of ageing. In this review, we discuss how geographical and ethnic variations influence habitual dietary patterns, nutrient structure, and gut microbial profiles with potential impact on the human healthspan. Several gut microbial genera have been associated with healthy elderly populations but are highly variable across populations. It seems unlikely that a universal pro-longevity gut microbiome exists. Rather, the optimal microbiome appears to be conditional on the microbial functionality acting on regional- and ethnicity-specific trends driven by cultural food context. We also highlight dietary and microbial factors that have been observed to elicit individual and clustered biological responses. Finally, we identify next generation avenues to modify otherwise fixed host functions and the individual ageing trajectory by manipulating the malleable gut microbiome with regionally adapted, personalised food intervention regimens targeted at prolonging human healthspan.Nanyang Technological UniversityPublished versionDL received the support of Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, through the award of the Presidential Postdoctoral Fellowship (Grant No. 001991-00001)

    Metabolomics resources in interoperability and Open-Science

    No full text
    Reproducibility and data sharing of metabolomic experiments are two fundamental issues that are needed to be addressed by the community in order to improve the quality of the research. Many advances have been made so far through different initiatives, among which are: 1) the minimal reporting standard defined by the Metabolomics Standards Initiative (MSI) for ensuring a minimal amount of information to support the interpretation of a metabolomics experiment; 2) metabolomic repositories such as MetaboLights or MetabolomeXchange for sharing experimental data and associated metadata across species; and 3) specific bioinformatic tools for reproducibility and data processing such as Workflow4Metabolomics (W4M), a reference workflow repository dedicated to metabolomics data processing. However there are still many issues that prevent to harness the full potential of metabolomics, such as incomplete or a partial adherence with guidelines or complex submission processes of experimental data. To address these limitations, in this work we extend W4M to help scientists in the definition and in the formatting of the whole collection of metadata coming from metabolomics based projects. For this purpose, we included new tools to acquire and transform in an user-friendly way metabolomics experimental raw data, study features and data analysis annotation, with the aim of assisting biologist in the incorporation of the minimal information for an experiment. This work will also generalize the use of the standard mzML format in W4M and the ISA Tab format for its posterior automatic submission ta MetaboLights, enhancing in this way the link between data providers and data managers

    Identification of dietary modulators of cognitive function in ageing using metabolomics discovery

    No full text
    Health Break SESSION 3Cognition and Gut-BrainIdentification of dietary modulators of cognitive function in ageing using metabolomics discovery. 8. International Conference on Polyphenols and Health ICPH 201
    corecore