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Abstract 

Mangoes and bananas, two of Queensland’s major tropical crops are sources of bioactive 

phytonutrients linked to dietary health based on antioxidant, cardio-protective and 

vasodilatory properties. Bioaccessibility of macro-, micro- and phytonutrients from whole 

foods is first determined by mastication followed by gastrointestinal liberation from food 

matrices (cell wall and membrane). Intact plant cell walls effectively encapsulate cellular 

components e.g. starch, lipid, protein, carotenoids and polyphenols, physically preventing 

entry of the mammalian digestive system, which is unable to enzymatically break down 

plant cell walls. Once bioaccessible, ‘free’ nutrients are available for absorption, while the 

unreleased fraction travels to the colon for fermentation. Nutritional recommendations are 

usually based on extracted contents of raw plant material; therefore true dietary 

concentrations have not been well established. This thesis focuses on studying the effects 

of sequential digestive processing of mango (Kensington Pride) and banana (Cavendish) 

flesh in the mouth, stomach, small intestine and colon using in vitro and in vivo 

approaches. 

 

In vitro nutrient bioaccessibility studies often favour mechanical processing over 

mastication. Investigating the effect of mastication (Chapter 3) in mango demonstrated 

microstructural changes, conferring a range of chewed particle sizes (large particle 

clusters to cell fragments). Actions not replicable with a cutting blade i.e. compression, 

squashing and formation of bolus were observed in these masticated particles, collectively 

enhancing encapsulation of carotenoids. Teeth cutting or slicing also occurred 

simultaneously, rupturing cell walls and releasing cellular contents. Whilst there was a 

(small) particle size effect on bioaccessibility, this may be secondary for soft (mango) 

tissues, in contrast to previous reports that a single robust carrot cell wall appeared to be 

sufficient to prevent bioaccessibility. There was incomplete carotenoid bioaccessibility from 

solid chewed mango particles (20-50%) and puree (65-75%) after simulated 

gastrointestinal conditions. Presence of intact mango cells and vascular fibres after in vitro 

digestion indicated acidic hydrolysis or other in vitro digestion conditions did not have a 

major role in breaking down cell walls, and established that unreleased and/or unabsorbed 

nutrients are expected to survive to the colon because they were shown not to be liberated 

from the food matrix. 

 

Mango and banana cell structures which survived in vivo mastication and in vitro 

gastrointestinal digestion (Chapter 4 part A), were fermented in vitro with porcine faecal 
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inoculum for 48 h. This involved fermentation of non-fibrous cell walls, thereby releasing 

the effectively encapsulated cell contents for possible metabolism by microbiota. 

Cumulative gas, short chain fatty acids and ammonia production were greater in mango 

than banana fermentation. Microscopic and spectroscopic analysis showed that this was 

due to a major fermentation-resistant starch fraction in banana, which was absent in 

mango. This study demonstrated distinctive differences in fermentation kinetics between 

banana and mango, due to preferential degradation of (parenchyma) fleshy cells over 

resistant starch in banana, and over thick cellulosic vascular fibres in mango. Upon 

disintegration of fruit matrices, phenolic compounds were consequently exposed to 

intensive faecal-microbiota metabolism beyond those of human endogenous enzymes. 

UPLC-PDA and UHPLC-Q-ToF-MS profiles (Chapter 4 Part B) revealed degradation of 

intact polyphenols within 8-24 h and concomitant formation of intermediate catabolites 

within 4-8 h.  

 

The time available for nutrient digestion and fermentation in the gastrointestinal tract is 

determined by the passage rate of intestinal contents, which has often been overlooked in 

in vivo digestibility studies. The influence of dried mango puree (containing pectin as a 

component of edible pulp) and purified apple pectin on passage time, was examined using 

pigs as a human model (Chapter 5 Part A). Mango puree and purified apple pectin delayed 

gastric fractional outflow to the small intestine, reflecting an increased water holding 

capacity (and corresponding lower dry matter content) of these diets. This increased water 

holding capacity however reduced overall retention time, leading to a faster passage rate 

in the small intestine and colon. These results provided insights to the dynamic movement 

of digesta, which were found on average, to be of 3 h-stomach, 0.3 h-duodenum, 0.5-1.6 

h-jejunum, 0.8 h-ileum, 2.3 h-caecum, 7 h-proximal colon, 4.8 h-mid colon and 3.7 h-distal 

colon. This is important information for comparing the results of in vitro 

bioaccessibility/metabolism studies (where time is a variable) to in vivo situations where 

residence time/passage rate is determined by interactions of food with animals and/or 

humans. Using samples from the same experiment, the possibility of monitoring mango 

polyphenol metabolism and uptake along the digestive tract and into the blood stream was 

assessed. Although it was possible to identify classes of compounds undergoing 

distinctive digestive processing, the complexity of chromatographic profiles and 

corresponding mass spectra precluded detailed molecular identification. 
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This study has evaluated aspects of digestive processing of two archetypal fruits to 

illustrate the importance of combining in vitro and in vivo studies to achieve a more 

complete perspective, and has thereby contributed to the process of defining mechanisms 

of fruits and vegetables contribution to health and well-being as suggested by many 

epidemiological studies. 
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Chapter 1. Introduction  

1.1. Project Significance 

Diets rich in fruits and vegetables have been reported to exert positive health benefits 

based on biological, nutritional and epidemiological studies of diet and health outcomes, 

which may be linked to a range of antioxidant, cardio-protective and vasodilatory 

properties, as well as their vitamin and mineral contents. Although fruits are known to be 

an essential part of a healthy diet, evidence is primarily based on epidemiological studies, 

which do not permit underlying mechanisms to be determined. An aspect of consuming 

whole fruit (pieces) as obtained from e.g. mango and banana is that phytonutrients are 

likely to be released slowly through the digestive process and may survive to the colon. 

Fruits such as banana and mango contain a wide range of phytonutrients encapsulated in 

a cellular tissue structure. Consumption of fresh fruit (pieces) may lead to a more 

prolonged release of phytonutrients compared with, for example, juices. This project 

examined the behaviour of a range of phytonutrients such as carotenoids, flavonoids, 

phenolic acids, and macronutrients such as plant cell walls and starch from banana and 

mango fruits using models for the small intestine and colon, in order to understand those 

factors that may promote or undermine the nutritional benefit of these tropical crops. Using 

a combination of in vitro data and the most relevant animal model (pigs) is expected to 

provide novel scientific information and technical evidence to explain the benefits of eating 

banana and mango- two key products of the Queensland tropical fruit industry.  

 

Bioaccessibility of phytonutrients from whole foods is first determined by mastication and 

then gastrointestinal liberation from the encapsulating food matrix (cell walls and 

membranes). Once released and bioaccessible, the ‘free’ phytonutrients are available 

either for small intestinal absorption and/or further colonic-microbial breakdown of 

unabsorbed phytonutrients. However, truly bioaccessible and bioavailable phytonutrient 

concentrations in fruits and vegetables have not been well established, and nutritional 

recommendations are usually based on chemically extracted contents of raw plant 

material, rather than the body’s ability to access these phytonutrients. In particular, the 

chewing of intact fruits and vegetables is expected to lead to a range of particle sizes in 

the swallowed food bolus. The consequences of this for the rate and extent of 

phytonutrient release in the stomach and small intestine, as well as the rate and extent of 

fermentation in the large intestine remain unexplored. Along with increasing evidence of 

the importance of the close interaction between the host and its microbiota in health and 

disease (Van den Abbeele, Van de Wiele, Verstraete, & Possemiers, 2011), specific 
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changes in the colonic microbiota composition and/or activity are thought to contribute to 

observed health effects upon polyphenol intake (Bialonska et al., 2010; Queipo-Ortuno et 

al., 2012; Williamson & Clifford, 2010). In vitro gut models are the preferred choice to study 

polyphenol-induced modulation of colonic microbiota and the persistence of change 

(Bolca, Van de Wiele, & Possemiers, 2013). 

 

Presently, the chemistry of phytonutrients in mango and banana are not known with 

certainty, and no in vitro release studies of phytonutrients after mastication have been 

reported. Consequently, digestion in the gastric and small intestine, and fermentation in 

the colon were evaluated using a combination of laboratory models, human chewing 

studies and a pig feeding trial. The possible mechanisms limiting bioaccessibility that were 

considered are: (1) trapping within intact cell walls that prevent passage or release 

(particularly of carotenoids), (2) binding to plant tissue components, for example, cells 

walls (particularly of polyphenols), or (3) slow but essentially complete release. 

 

1.2. Project Aims 

To investigate the effects of sequential digestive processing of mango (Kensington Pride) 

and banana (Cavendish) flesh in the mouth, stomach, small intestine and colon, using a 

combination of in vitro and in vivo models. 

 

1.3. Project Objectives 

1.3.1. To assess the mechanisms restricting the bioaccessibility of the phytonutrients, and 

to monitor the roles of macronutrients such as plant cell walls and starch during the 

digestive process in vitro (Chapter 3 and Chapter 4 Part A). 

1.3.2. To examine metabolic biotransformations of mango and banana phytonutrients in 

vitro (Chapter 4 Part B). 

1.3.3. To examine the passage of a mango ingredient and the main soluble dietary fibre in 

both banana and mango (pectin) through the digestive tract in vivo using a pig 

model (Chapter 5 Part A). 

1.3.4. To assess the practicality of examining metabolic biotransformations of mango 

phytonutrients within complete diets in vivo (Chapter 5 Part B). 
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Chapter 2. Literature Review 

2.1. Tropical fruit 

Mango and banana constitute the major tropical fruits of Australia’s horticulture industry, 

with the production of these two fruits mainly concentrated in Queensland. 

2.1.1. Mango 

Mango, a large fleshy drupe, sometimes fibrous, belongs to the species Mangifera indica 

(Ian, 2006). It is a climacteric fruit where ripeness coincides with the respiratory peak. Its 

eating quality is closely associated with the onset of the climacteric peak, when fruits 

change in colour, texture and aroma, and starch is converted into sugars. The ripening 

rate changes easily with storage temperature and the quality of mango is affected by 

temperature and relative humidity during ripening (Lillian, 2006). 

 

In Queensland, dry areas with annual rainfall of ~1000 mm (occurs mostly during January 

to March) and good sun exposure from August to December, are favoured for mango 

growing. The growing season in Australia stretches from mid-spring to autumn (June to 

August), with peak production during December and January depending on the regions of 

growing areas (AAG, 2006). Queensland is the major producing state in Australia, 

accounting for 70% of the volume of domestic production, with the Northern Territory 

having 20% of production. The mango season epitomises a Queensland summer and 

large trees can be found planted on street footpaths in almost every town throughout the 

state (Australian Mango Industry Association, 2009). Other production areas include New 

South Wales (NSW) and Western Australia. Mangoes are usually picked green. Quality is 

improved by controlled temperatures between 15 and 21C, with the best ripening 

temperatures from 21-24C. Ethylene treatment allows green mangoes to develop full 

colour in seven to ten days depending on the degree of maturity, whereas untreated 

mangoes require ten to fifteen days (see Fig 2.1 for colour guide).  

 

 
Figure 2.1. Mango skin colour guide at different stages of ripening (Primary Industries & 
Fisheries, 2012). 
 



 

 
 

4 

Table 2.1. Growth characteristics of some commercial mango cultivars. 
Cultivar Origin Skin colour Fibre Characteristics 

Ataulfo/ Manila 

 

Mexico, 
Philippines 

 

Bright yellow Low Small oval fruit, smooth, firm 
flesh with a creamy flavour, 

vibrant yellow flesh. Skin turns to 
a deep golden colour and small 
wrinkles appear when fully ripe. 

Calypso 

 

Australia Deep 
orange- 

red blush on 
yellow 

Low Firm flesh with little fibre, full 
sweet flavour, small seed. 

Haden 

 

Mulgoba, 
India, 

Mexico 

Red blush 
on yellow or 
green with 
small white 

dots 

Abundant Medium to large fruit with an oval 
shape, firm yellow flesh with fine 

fibres, rich and aromatic 
overtones. 

Honey Gold 

 

Australia Golden 
apricot- 
yellow 

Low Medium size fruit, firm and 
fibreless flesh with a honey-
yellow colour, rich sweet and 
aromatic flavour, small seed. 

Keitt 

 

Mulgoba, 
Australia 

Small pink 
blush on 

green 

Little Large fruit with an oval shape, 
firm juicy yellow flesh with a very 

sweet flavour. 

Kent 

 

Mexico, 
Ecuador, 

Peru, 
Australia 

Small red 
blush on 

dark green 

Low Large oval fruit, juicy, tender 
flesh with a rich flavour. 

Tommy Atkins 

 

Mexico, 
Eucador, 

Brazil, Peru 

Dark red 
blush on 

green 

Fibrous Medium to large fruit with an oval 
shape, firm flesh due to fibres 

throughout, mild flavour. 

Kensington Pride 

 

Australia Yellow with 
pink blush 

Low Small to medium size fruit, oval 
to round shape, golden and 

fibreless flesh, soft, sweet and 
tangy flavour. 

R2E2 

 

Australia Orange-red 
blush on 

green 

Low Large round fruit, firm flesh and 
milder flavour, lemon-yellow 
flesh. Has a long shelf-life. 

Images and information adapted from (Australian Mango Industry Association, 2009; Exotic Fruit Market, 
2012; Horticulture Australia Limited, 2008; National Mango Board, 2009). 

 

Currently around 70% of the trees grown commercially in Australia are Kensington Pride, 

also known as Bowen mangoes, with the other established cultivars including Irwin, Nam 

Dok Mai, R2E2, Kent, Tommy Atkins and Calypso (Australian Mango Industry Association, 

2009). Extensive plant breeding has generated hundreds of cultivars, the fruits of which 

show a pronounced diversity in size, shape, colour, flavour, seed size and composition 
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(Berardini et al., 2005b). Table 2.1 details the varieties of commercial mango grown 

around the world. The typical yellow-orange colour of ripe mango fruit is due to the 

presence of carotenoids (Ornelas-Paz, Failla, Yahia, & Gardea, 2008) with β-carotene 

being the most abundant (see section 2.2.1.). 

 

2.1.2. Banana 

Banana is a general term that refers to all wild species, landraces and cultivars belonging 

to the family Musaceae, genus Musa (Robert & Odilo, 2011). The banana is a tropical and 

subtropical herbaceous plant consisting of an underground corm, and a trunk 

(pseudostem) comprised of concentric layers of leaf sheaths. Bananas do not always 

attain best eating quality on the plant. The fruit is picked green and then matures (colour 

stage 1; Fig 2.2). Controlled ripening permits sufficient time for transport and marketing 

before they ripen (Mercadante & Rodriguez-Amaya, 1998). The peel colour index, which 

ranges from 1 to 7 (1 = green; 2 = with trace of yellow; 3 = slightly more yellow than green; 

4 = more yellow than green; 5 = green tips at end; 6 = completely yellow; 7 = yellow peel 

with brown spots of sugar), is taken into consideration to estimate the degree of ripening 

(Isopan, 2011). Peel colour change are largely due to degradation of chlorophyll or the 

unmasking of carotenoids rather than carotenoid synthesis (Mohapatra, Mishra, & Sutar, 

2010). The state of ripeness is indicated by peel colour; best eating quality is considered 

when solid yellow colour is specked with brown. 

 

 
Figure 2.2. Banana colour chart at different stages of ripening (Isopan, 2011). 

 

In terms of world production, banana (genus Musa) is one of the top three tropical fruits, 

along with citrus fruits and pineapple. It is estimated that 97% of bananas traded 

internationally are of the Cavendish group of varieties (Banana Link, 2011). In Australia, 

bananas are considered the most popular fruit and are consumed steadily throughout the 

year. The banana industry is one of the largest fruit growing industries, and hence an 

important contributor to the economies of rural communities in banana growing areas. The 

banana fruit is amongst Australia’s top ten supermarket lines; approximately 28 million 

bananas are consumed every week, which represents 13 kg per person per year, an 
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equivalent of 60-70 bananas per person (Australian Bananas, 2011). They are principally 

grown in the tropics of North Queensland, now centered around Innisfail and the Tully 

region. Other smaller scale growing areas include sub-tropical Northern NSW, Southern 

Queensland, and Carnarvon in Western Australia.  

 

Cavendish bananas account for about 85% of Australian banana production (Australian 

Bananas, 2011). In recent times, leading supermarket chains in the Australian marketplace 

have suggested that overall banana sales could be significantly increased by broadening 

the range of banana cultivars sold (Horticulture Australia Limited, 2011). Ladyfinger, 

Ducasse, Sucrier and Red Dacca are some of the other cultivars regularly sold in local 

markets. Table 2.2 summarises the characteristics of some commercial banana cultivars. 

 

Table 2.2. Growth and characteristics of some commercial banana varieties. 
Group Subgroup Examples of 

common cultivar 
namesa 

Characteristics 

AA Sucrier Sucrier, Lady’s 
Finger 

Small fruit (8-12cm), thin golden skin, light 
orange firm flesh, very sweet, 5-9 bands per 

bunch, 12-18 fingers per hand. 
 Lakatan - Medium to large straight fruit (12-18cm), 

golden yellow, light orange flesh, firm, dry, 
sweet and aromatic, 6-12 hands per bunch, 

12-20 fingers per hand. 

AAA Gros Michel Gros Michel Medium to large fruit, thick skin, creamy white 
flesh, fine textured, sweet and aromatic, 8-12 

hands per bunch. 
 Cavendish Giant Cavendish 

(e.g. Williams), 
Grande Naine, 

Medium to large fruit, yellow skin, white to 
creamy flesh, melting, sweet, aromatic, 14-20 

hands per bunch, 16-20 fingers per hand. 

AAB Silk Sugar Small to medium (10-15cm), thin yellow 
orange skin, white flesh, soft, slightly subacid, 
5-9 hands per bunch, 12-16 fingers per hand, 

skin frequently has blemishes. 
 Plantain French, Pisang 

Ceylan 
Yellow skin, creamy orange firm flesh, few 

hands per bunch. 

ABB Bluggoe Bluggoe, 
Mondolphin 

Medium to large cooking banana, thick 
coarse skin turns brownish-red when ripe, 
orange creamy flesh, starchy, 7 hands per 

bunch. 

BBB Saba - Stout, angular, medium to large cooking 
banana (10-15cm), thick yellow skin, creamy 

white flesh, fine textured, 8-16 hands per 
bunch, 12-20 fingers per hand. 

aCultivar names varying depending on country (Robert & Odilo, 2011). 

 

A distinction can be made between the ‘dessert’ or sweet bananas (M. acuminata), which 

are ripened and best eaten fresh, and ‘cooking’ or starchy bananas and plantains (M. 
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balbisiana), which are usually cooked or processed. The yellow dessert banana cultivars 

are the focus of this thesis. Dessert bananas, in general, show great diversity in terms of 

plant stature, fruit size and colour. During ripening of the banana fruit, the flesh colour 

changes from a typical opaque white product with high starch content to a soft yellow or 

orange product (Fig 2.3) as yellowing of the peel intensifies (Englberger, Darnton-Hill, 

Fitzgerald, & Marks, 2003d; Salvador, Sanz, & Fiszman, 2007). Colour change in the pulp 

is explained by varying levels of β-carotene in different varieties, ranging from 23-4960 

µg/100g (Section 2.2.1). There are many banana cultivars, however, few have been 

analysed for their carotenoid content, as pointed out in a global review (Englberger et al., 

2006b) discussing the potential of carotenoid-rich bananas.  

 

 
Figure 2.3. Differences in flesh colour of different banana cultivars. The cream coloured 
banana (left) is a seedless hybrid dessert banana, Silk (AAB group) while the yellow flesh 
banana (right) is a Fe’I banana, Karat (Scott, Randy, & Angela, 2006). 
 

2.2. Phytonutrients in mango and banana 

Epidemiological studies suggest that diets high in consumption of fruits and vegetables 

offer possible health benefits such as the prevention of cardiovascular diseases, certain 

cancers and neurodegenerative disorders. Accumulating evidence has revealed that both 

mango and banana flesh and the peels contain major bioactive compounds including 

carotenoids and polyphenols. Proposed mechanisms for their biological activities, vary 

from being estrogen-like (An, Tzagarakis-Foster, Scharschmidt, Lomri, & Leitman, 2001), 

inhibiting tyrosine kinases (Takahama, Oniki, & Hirota, 2002), exhibiting antioxidant 

(Merken & Beecher, 2000; Tsao & Deng, 2004), anti-carcinogenic (Hertog et al., 1995; 

Yamanaka, Oda, & Nagao, 1997), anti-mutagenic (Agullo et al., 1997; Yoshikawa, 

Ninomiya, Shimoda, Nishida, & Matsuda, 2002), anti-allergic (Fraga & Oteiza, 2011), anti-

arthrogenic (Daud et al., 2010; Erdman et al., 2007), anti-inflammatory (Peri et al., 2005; 

Suzuki, Isobe, Morishita, & Nagai, 2010), antimicrobial (Zheng & Lu, 1990; Zheng & Wang, 

2001), and anti-thrombotic effects  and angiogenesis inhibitory activities (Meyer, 

Heinonen, & Frankel, 1998). In addition, some carotenoids are precursors of vitamin A. 

The per capita consumption of mangoes and bananas in Queensland are high, therefore 
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these fruits are an important source of several nutritional and health components. There 

have been only a few studies that have investigated the carotenoid and polyphenol (the 

two major phytonutrient families) content of mangoes and bananaa, and even fewer 

studies that have concentrated on the qualitative identification of these compounds. The 

following review highlights the main categories of carotenoids and polyphenols present in 

different cultivars of mango and banana. 

 

2.2.1. Carotenoids in mango and banana flesh 

Carotenoids are usually C40 tetraterpenoids with a basic structure of symmetrical 

tetraterpenoid skeletons formed by the conjugation of two C20 units, which serves as the 

light-absorbing chromophore responsible for the yellow, orange or red colour of fruits and 

vegetables. β-carotene occurs as an orange pigment, while α-carotene is a yellow pigment 

(Takyi, 2001). Carotenoids are localised in the subcellular plastids, chloroplasts and 

chromoplasts. In chloroplasts, the carotenoids are associated with proteins and serve as 

accessory pigments in photosynthesis, photoprotective pigments and membrane 

stabilisers (Schieber & Carle, 2005). In chromoplasts, they are deposited in crystalline 

form or as oily droplets in fruits, and may be esterified with fatty acids in ripe fruits. The 

globulous mango chromoplasts (Fig 2.4), which are the most common type of 

chromoplasts and widely found in orchard fruits, contain carotenoid-carrying lipid droplets 

(Pott, Marx, Neidhart, Muhlbauer, & Carle, 2003b; Schieber & Carle, 2005; West & 

Castenmiller, 1998). Mango chromoplasts contain numerous carotenoid-containing 

plastoglobuli, which support partial solubilisation of these pigments in lipid droplets. Mango 

chromoplasts are assigned to globular and reticulotubular types (Vasquez-Caicedo et al., 

2006). This underlying chromoplast structure containing different carotenoids, and their 

physical properties, may be one reason for bioavailability variation. 

 

 
Figure 2.4. Light micrograph of a ripe mango mesophyll cell (showing the typical color of 
mango chromoplasts (arrows), ‘soft cell wall’ (w) and enlarged vacuole (v) (Vasquez-
Caicedo et al., 2006).  
 

Tropical fruits typically contain more carotenoids than temperate fruits, which usually 

contain more anthocyanins. Mango is one tropical fruit rich in carotenoids and total 
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carotenoid (sum of free and esterified carotenoids) concentrations range from 900-9200 

µg/100g fresh weight of the edible parts of mango flesh (Corral-Aguayo, Yahia, Carrillo-

Lopez, & Gonzalez-Aguilar, 2008; Ornelas-Paz et al., 2008; Pott et al., 2003b; Yahia, 

Ornelas-Paz, & Gardea, 2006). The content of carotenoids in banana may be low but the 

high consumption of banana can make it an important nutritional source. Musa fruit pulp 

tissue generally has relatively small amounts of carotenoid species, primarily β-carotene, 

α-carotene, β-crypoxanthin and/or lutein (Arora, Choudhary, Agarwal, & Singh, 2008; 

Davey, Keulemans, & Swennen, 2006; Englberger et al., 2006b) with the total carotenoid 

concentration ranging from 60-5370 µg/100g. Khoo, Prasad, Kong, Jiang, and Ismail 

(2011) further stated that yellow coloured fruits contain lower amounts of carotenoids 

including the genera Musa. This statement correlates well with carotenoid levels detected 

in banana and mango mesocarp where it has been observed that most commercial 

banana cultivars have white to creamy-yellow flesh and contain lower amounts of 

carotenoids compared to mango, which have deep orangey-yellow flesh and significantly 

higher carotenoids levels. Colouration of the edible portion of the flesh appears to be a 

good indicator of its carotenoid content; bright yellow-orange Thai mango cultivars have a 

higher total carotenoid content (6544-11,249 µg/100g) compared to the pale-coloured 

cultivars (1019-2195 µg/100g) (Vasquez-Caicedo, Sruamsiri, Carle, & Neidhart, 2005). 

This was also true for bananas where the flesh colour of most commercial banana 

cultivars range from creamy-white to pale-yellow.  Interestingly, other studies (Arora et al., 

2008; Davey et al., 2007; Englberger et al., 2003d; Englberger, Marks, & Fitzgerald, 

2003b; Englberger et al., 2006a; Englberger, Schierle, Marks, & Fitzgerald, 2003a) have 

consistently verified that colour reflects the carotenoid levels in banana cultivars with 

orange-fleshed plantain varieties (AAB) having substantially higher levels of fruit 

carotenoids than do dessert bananas (AAA). 

 

During ripening, most varieties of mangoes show a steady increase in carotenoid content 

(John, Subbaray, & Cama, 1970; Mercadante & Rodriguez-Amaya, 1998; Vasquez-

Caicedo et al., 2005; Yahia, Ornelas-Paz, & Gardea, 2006). Ornelas-Paz, Failla, Yahia 

and Gardea (2008a) recorded exponential changes of the main carotenoids and 

xanthophyll esters content. Several studies demonstrated that heat treatment apparently 

enhanced carotenoid synthesis during ripening and accelerated mango ripening 

(Gonzalez-Montelongo, Lobo, & Gonzalez, 2010b; Talcott, Moore, Lounds-Singleton, & 

Percival, 2005).  
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Carotenoids occur predominantly in the all-trans configuration, which are more 

thermodynamically stable than cis-isomers. Additionally, carotenoids exhibit pronounced 

photo- and thermal sensitivity. As mentioned earlier, carotenoids are incorporated in 

lipoproteins or membranes in fruits and are relatively well protected. During peeling, de-

stoning or cutting of the fruits, extraction or other processing steps, carotenoids readily 

undergo hydrolysis, oxidation or trans-cis isomerisation that is catalysed by UV light, acids 

and bases, oxygen, heat or traces of metal ions (Davey, Keulemans, & Swennen, 2006; 

Davey, Mellidou, & Keulemans, 2009; de Rigal, Gauillard, & Richard-Forget, 2000; 

Gonzalez & Gonzalez, 2010c; Kim & Lee, 2002; Mercadante & Rodriguez-Amaya, 1998; 

Mordi et al., 1993; Nielsen, 2003b; Ornelas-Paz, Yahia, & Gardea, 2008; Tsao & Deng, 

2004). The known susceptibility of carotenoids to oxidation and degradation indicates that 

it is important to observe the stability of tissue samples and carotenoid extracts during 

storage. 

 

Carotenoids can be divided into two groups based on their composition: carotenes and 

xanthophylls. Hydrocarbon carotenoids containing only carbon and hydrogen are 

collectively called carotenes; those with oxygen containing functional groups such as keto, 

hydroxy or epoxy groups are termed xanthophylls or oxycarotenoids, and are reported to 

be the enzymatically formed oxidation products of α- and β-carotene (Van den Berg et al., 

2000). 

 

2.2.1.1. Carotenes 

Carotenes include several compounds having the general formula C40H56. β-Carotene is 

mostly found as the all-trans isomer and less as the cis-isomer (Fig 2.5). A study on the 

effects of drying mango slices revealed that fresh mango fruits contain up to 27% cis-

isomers of β-carotene. When mango slices are dried in the dark, an increase in 13-cis-β-

carotene was attributed to the elevated temperature, while solar drying of mangoes results 

in significantly higher amounts of the 9-cis-isomer. This finding correlates with dessert 

banana and plantain varieties, where exposure of their extracts to light results primarily in 

the formation of 9-cis-β-carotene (Davey, Keulemans, & Swennen, 2006). 

 

Bicyclic β-carotene is the most widespread of all carotenoids in food and occurs as the 

major constituent, while α-carotene occurs at lower concentrations. The concentration of 

β-carotene in banana fruit pulp ranges from 21-4940 µg/100g edible portion with average 

values of 23 µg/100g for Cavendish, the primary cultivar marketed globally (NUTTAB, 
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2011a), and 25 µg/100g α-carotene (USDA, 2011). The β-carotene contents of other 

banana cultivars from different countries are shown in Table 2.3. β-carotene levels are 

higher in those bananas with deeper flesh colouration. This trend is supported by 

Englberger et al. (2006b) who studied carotenoid content in relation to the flesh colour of 

selected cultivars and showed that all the tested yellow-fleshed cultivars had higher levels 

of β-carotene than the two cream-fleshed commercially available cultivars- Williams 

Cavendish and Lady Finger.  

 

 
Figure 2.5. Structure of all-trans-β-carotene and its two geometric isomers (Boon et al., 
2010). 
 

Similarly in mangoes, all-trans-β-carotene is the principal carotene comprising 48-84% of 

the total carotenoid concentration depending on cultivar, fruit maturity and physiological 

stage (Godoy & Rodriguez-Amaya, 1989). β-Carotene content ranges from 324-4720 

µg/100g fresh weight (Table 2.4). The other carotene, α-carotene is present in smaller 

amounts (Robles-Sanchez et al., 2009a) or not at all. Holden et al. (1999) quantified 17 

µg/100g α-carotene, 445 µg/100g β-carotene and 11 µg/100g β-cryptoxanthin in several 

mango cultivars grown in USA, which was similar to the general values (9 µg/100g α-

carotene, 640 µg/100g β-carotene, 10 µg/100g β-cryptoxanthin) reported in the USDA 

database (2011) (varieties were not indicated). This pattern is comparable to results from 

other studies (de la Rosa, Alvarez-Parrilla, & Gonzalez-Aguilar, 2010) that showed β-

carotene was detected in the largest proportion (300-4200 µg/100g β-carotene, 100 

µg/100g lutein, 0-1640 µg/100g β-cryptoxanthin). From NUTTAB, α-carotene was 

quantified at a similar level (9 µg/100g), whereas β-carotene and β-cryptoxanthin were 

found at significantly higher levels of 1433 µg/100g and 1516 µg/100g respectively 

(NUTTAB, 2011b). β-Carotene or individual contents of carotenoids have only been 

Note:  refers to point of isomerisation 
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reported in a study focused on the intra- and inter-fruit variability between dried Kensington 

Pride mango powder (Hewavitharana, Tan, Shimada, Shaw, & Flanagan, 2013b). 

 

Table 2.3. β-carotene content based on edible portions of ripe banana flesh. 
Banana 
cultivars/varieties 

Country of origin β-carotenea 
(µg/100g FW) 

Reference 

Asupina Australia 1434 (Englberger et al., 
2006b) Kirkirnan 729 

Pisang Raja Udang 
(Red Dacca) 

722 

Horn Plantain 639 
Kluai Khai Bonng 437 
Wain 501 
Pacific Plantain 413 
Lakantan 289 
Red Dacca 214 
Sucrier 227 
Lady Finger 112 
Williams (Cavendish) 65 
Uht en Yap Federated 

States of 
Micronesia 

2780 (Englberger et al., 
2003a) Uht Karat 520 

Usr Kulasr 660 
Usr Taiwang 270 
Usr in Yeir 340 
Usr Lakatan 330 
Uht en Ruk 90 

NR Malaysia 151b, 66 (Siong & Lim, 
1991) 

NR (AAA) NR 56 ± 14 (Mohapatra, 
Mishra, & Sutar, 
2010) 

NR (AAB) 97 ± 31 

Red Banana India 117 ± 19b (Arora et al., 
2008) Karpooravalli 28 ± 7b 

Rasthali 30 ± 7b 
Hill banana 29 ± 5b 

NR USA 21 (Holden et al., 
1999) 

aValues obtained via HPLC analyses. bValues obtained via direct spectrophotometry method (450 nm). 

 

The proportion of carotenoids varies with the genotype of the fruits analysed. All-trans-β-

carotene (54-90% of the total carotenoids) have been found to be higher than all-trans-α-

carotene levels in seventeen banana varieties (Englberger et al., 2003d). Results of 

Englberger et al. (2006b) also showed that β-carotene levels are greater than α-carotene 

in most cultivars with exceptions for Red Dacca and Lady Finger. In five varieties of 

Belgium banana and plantain, all-trans-β-carotene never represented more than 50% of 

the total carotenoids, and in Yangambi-5, it was as low as 30% (Davey, Keulemans, & 

Swennen, 2006) presumably related to the genetic origins of these varieties.  
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Table 2.4. Relative amounts of carotenoids of different cultivars of fully ripe mango flesh. 
Carotenoids Mango cultivars/varieties (and their country of origin) 

Keitt Tommy 
Atkins 

Keitt Ataulfo NR Bad-
ami 

Alfon-
so 

Sao Paulo, Brazila Bahia, 
Brazilb 

Mexicoc Tainan, 
Taiwan

d 

Indiae Indiaf 

Carotenes (Hydrocarbons) 

All-trans-β-carotene 670 ± 
160 

580 ± 
250 

1340- 
1620 

3940 ± 
260 

3654 5064 5950 

9-Cis-β-carotene - - - 290 ± 
14 

118 

13-Cis-β-carotene - - - - 148 

-Carotene - - - - - 21 1 

Phytoene - - - - - 632 370 
Phytofluene - - - - - 1170 689 

Xanthophylls (Oxycarotenoids) 

Cis-β-cryptoxanthin tr-100 10 ± 10 tr-10 0.3 - 40 66 
All-trans-β-cryptoxanthin 20 30 ± 10 30 -  
All-trans-β-zeaxanthin 80 ± 30 40 ± 20 60-90 - 116 29 1 
Luteoxanthin isomers 270 ± 

20 
200 ± 

60 
310-
410 

- 360 93 1125 

All-trans-β-violaxanthin 1800 ± 
400 

2240 ± 
910 

1820- 
2390 

2420 ± 
19 

460 - - 

9-Cis-violaxanthin 720 ± 
140 

1450 ± 
470 

990- 
1030 

800 ± 6 180 708 902 

13-Cis-violaxanthin - tr 130-
150 

- 

Cis-neoxanthin 30 ± 20 100 ± 
100 

tr-0.2 - 46 - - 

All-trans-neoxanthin 190 ± 90 490 ± 
450 

100-
360 

- 142 - - 

Neochrome - - - - - - - 
Cryptoflavin - - - - - 6 - 
Antheraxanthin - - - - - 331 151 
Mutatoxanthin - - - - - 373 076 
Auroxanthin - - - - - 1040 271 
5,6-Monoepoxy-β- 
carotene 

- - - - - 75 085 

Mutatochrome - - - - - 110 152 
-Values not detected or not reported. tr: trace amounts.  aAdapted from (Mercadante & Rodriguez-Amaya, 
1998), badapted from (Mercadante, Rodriguez-Amaya, & Britton, 1997), cadapted from (Ornelas-Paz et al., 
2008), dadapted from (Chen, Tai, & Chen, 2004), eadapted from (John, Subbaray, & Cama, 1970), fadapted 
from (Jungalwala & Cama, 1963). All values were obtained via HPLC analyses.  

 

Variability in banana carotenoid contents was studied using a selection of Central and 

West African Musa banana varieties cultivated under standardised field conditions (Davey 

et al., 2007). Within-fruit, within-hand and within-plant analyses, as well as between-plant 

analyses demonstrated that carotenoid content differed across all sample groups. Even 

within a single finger, there were statistically different concentrations both longitudinally 

and laterally with an overall variation of ±20% across all eight sample points in a finger. 

Thus, to compensate for within- and between-fruit differences, it is important to obtain as 
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much of the flesh as practically possible in the preparation of bulk samples for analysis, 

especially during the removal of the peel and seed of the banana. Variations in 

carotenoids content appear to be at least partly related to differences in the fruit 

developmental status that result from the time differences when the flowers of 

inflorescence emerge and exposure to sunlight or maturity. However, the observed trends 

were genotype specific (Davey et al., 2007). Within-plant variability of the banana hand 

position in the bunch appears to be greater than the variability atrributed to finger position 

in the hand (Davey et al., 2007). A common trend was observed for within-fingers, within-

hand and within-plant variations where the proportions of individual carotenoid species (all-

trans-β-carotene and all-trans-α-carotene) remained constant for each genotype across all 

samples analysed. However, mean carotenoid levels per genotype showed considerable 

genetic variation in the concentrations between individual plants of a single variety, and 

between Musa cultivars. In addition, disparities in sample preparation, extraction methods 

and choice of solvents affect the amount of carotenoids quantified. A wide variety of 

solvents and mixtures that are dependent on the tissue matrix and carotenoid species of 

interest have been used for carotenoid extraction and analyses (Section 2.4.1 contains a 

detailed discussion of factors that influence carotenoid extraction from fruit samples). 

 

2.2.1.2. Xanthophylls 

Xanthophylls are oxidised derivatives of carotenes. They have the general structure 

C40H56O2, contain hydroxyl groups and are more polar than the carotenes (Matsuno et al., 

1986). Most xanthophylls are yellow-orange pigments, especially lutein and zeaxanthin 

(Fig 2.6). Lutein appears to undergo limited epoxidation, while zeaxanthin is easily 

transformed to antheraxanthin and violaxanthin.  

 

  
Lutein      Zeaxanthin 

   
Antheraxanthin          Violaxanthin  

 
Figure 2.6. Structures of lutein, zeaxanthin, antheraxanthin and violaxanthin. 

 

Lutein (113 µg/100g FW basis) has been reported in Musa spp. and β-cryptoxanthin (3 

µg/100g FW) in Musa paradisiacal L. (Khoo et al., 2011). Here, lutein has been 

consistently detected in lower amounts than α- and β-carotene in banana cultivars. Lutein 
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was quantified in selected banana cultivars grown in Australia, ranging from 7-80 µg/100g 

edible portion (Englberger et al., 2006b) and a mean value of 32 µg/ in Malaysian cultivars 

(Siong & Lim, 1991).  

 

All-trans-violaxanthin and 9-cis-violaxanthin are the two other major carotenoids identified 

in the mango cultivars - Kent (Manthey & Perkins-Veazie, 2009; Ornelas-Paz, Yahia, & 

Gardea, 2008), Tommy Atkins, Keitt (Mercadante & Rodriguez-Amaya, 1998; Mercadante, 

Rodriguez-Amaya, & Britton, 1997), Haden, Criollo, Paraiso (Ornelas-Paz, Yahia, & 

Gardea, 2007), Ataulfo, Manila (Robles-Sanchez et al., 2011; Robles-Sanchez et al., 

2009a) and Badami (John, Subbaray, & Cama, 1970). In addition, all-trans- and cis-β-

cryptoxanthin, all-trans-zeaxanthin, lutein, luteoxanthin isomers, and all-trans- and cis-

neoxanthin have been identified at lower levels. Because of its facile degradation, 

violaxanthin levels may be underestimated in fruits, as was shown for mango (Mercadante 

& Rodriguez-Amaya, 1998). Table 2.4 lists the common carotenoids and their distribution 

in various mango varieties.  

 

Carotenoid composition differs among mango varieties. Manthey and Perkins-Veasie 

(2009) found β-carotene to be the predominant carotenoid with all-trans-violaxanthin and 

9-cis-violaxanthin being the second and third most abundant. These results are in 

agreement with findings generated by other studies (Godoy & Rodriguez-Amaya, 1989; 

Holden et al., 1999; Jungalwala & Cama, 1963; Ornelas-Paz, Yahia, & Gardea, 2007, 

2008; Pott, Breithaupt, & Carle, 2003), which found β-carotene to be the main carotenoid, 

representing more than 50% of the total carotenoid content. However, Pott, Marx, 

Neidhart, Muhlbauer and Carle (2003b), and Ornelas-Paz, Yahia and Gardea (2008) 

showed that all-trans-violaxanthin and 9-cis-violaxanthin dibutyrates were the main 

carotenoid esters in Kent mangoes (from Brazil and Mexico respectively), and the 

concentration of 9-cis-violaxanthin was slightly lower than that of all-trans-violaxanthin. In 

addition, Mercadante and Rodrigues-Amaya (1997) reported higher concentrations of all-

trans-violaxanthin in Keitt mango, which accounted for 38% of the total carotenoid content, 

while all-trans-β-carotene accounted for 27% of the total carotenoid concentration. 

 

The effects of harvest date, location and varietal differences on the carotenoid pattern 

were further investigated by Mercadante and Rodrigues-Amaya (1998), and Manthey and 

Perkins-Veasie (2009). Their findings proved there was modulation of carotenoid values 

for different cultivars sourced from assorted locations and countries. Similar patterns of all-
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trans-violaxanthin, 9-cis-violaxanthin and all-trans-β-carotene as the major carotenoids 

were observed in ripe Keitt and Tommy Atkins; however, Tommy Atkins had higher all-

trans-violaxanthin content (24 µg/g vs 18 µg/g) and 9-cis-violaxanthin (15 µg/g vs 7 µg/g) 

content (Mercadante & Rodriguez-Amaya, 1998). For the carotenoid composition of Keitt 

from Sao Paulo (moderate climate of Brazil) and Keitt from Bahia (hot climate of Brazil), 

the latter had more than twice as much β-carotene (7 µg/g vs 15 µg/g); all-trans-

violaxanthin and 9-cis-violaxanthin levels were also higher in Bahia Keitt. A comparison of 

Tommy Atkins from Sao Paulo to the same cultivar from Mato Grosso showed that the β-

carotene concentration of the latter was twice the concentration as from Sao Paulo (Godoy 

& Rodriguez-Amaya, 1989). These results indicate that geographic and/or climate effects 

could have the same or greater influence on carotenoid composition than cultivar 

differences, with fruits from hotter regions having generally higher carotenoid contents. 

This similar geographic tendency was illustrated by results of the study by Manthey and 

Perkins-Veasie (2009), where for the specific cultivars- Haden and Kent, generally higher 

β-carotene values occur at certain harvest dates for the fruit grown in Mexico in 

comparison to other locations. These findings seem to be supported by the same trend 

observed in Table 2.6 of compiled β-carotene values. 

 

Inherent variations in carotenoid contents should be expected due to: 1) varying stages of 

maturity at which the mangoes were collected or left to ripen before analysis, 2) 

cultivar/varietal differences, 3) geographic or climate effects, and 4) processing and 

storage conditions. Obviously, a part of this discrepancy is attributed to the extraction and 

analytical procedures employed by different authors such as inclusion of a saponification 

step, or choice of solvents and extraction conditions. In some studies, authors employ 

saponification to hydrolyse xanthophyll esters or remove chlorophylls that, when present in 

high amounts, can interfere with extraction; this is usually carried out at high temperatures 

for 10-120 min. However, carotenoid degradation and losses, and artefact formation have 

been also reported with the use of saponification. Provitamin A carotenoids such as α-

carotene, β-carotene, γ-carotene and β-cryptoxanthin can resist saponification conditions, 

while xanthophylls such as lutein, violaxanthin and other dihydroxy and trihydroxy 

carotenoids can suffer considerable losses during the saponification process (Kimura & 

Rodriguez-Amaya, 1999; Kimura, Rodriguezamaya, & Godoy, 1990). In a study that 

investigated the chromatographic patterns of saponified and unsaponified Ataulfo mango 

extracts (Ornelas-Paz, Yahia, & Gardea, 2007), the two most abundant compounds (all-

trans-violaxanthin and 9-cis-violaxanthin dibuytrates) present in unsaponified extracts were 
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replaced with all-trans-violaxanthin, 9-cis-violaxanthin and an unidentified compound. In 

addition, all-trans-violaxanthin ester and 9-cis-violaxanthin ester disappeared when crude 

mango extracts were saponified, and were replaced by the un-esterified compounds 

(Ornelas-Paz, Yahia, & Gardea, 2008).  

 

2.2.2. Polyphenols in mango and banana flesh 

Polyphenols are plant secondary metabolites and contain a wide range of compounds 

composed of an aromatic benzene ring with one or more hydroxyl moieties, including their 

functional derivatives such as glycosides, esters or methyl esters. Phenolics, despite only 

being present in small concentrations are major contributors to colour, sensory 

characteristics and antioxidant activity. Phenolic compounds present in fruits are found in 

both free and bound forms (mainly as β-glycosides); however, the free forms as intact 

conjugates are often excluded from analyses and for this reason, the total phenolic content 

of fruits are often underestimated (Arranz, Silvan, & Saura-Calixto, 2010). Studies on 

phenolic composition and concentrations have been carried out for many temperate fruits, 

to a lesser extent for tropical fruits, and for only a few types of mango and banana.  

 

Existing studies show that there are significant levels of total free polyphenols in different 

banana cultivars ranging from 5-36 mg GAE/100g edible portion (Table 2.5). Evaluation of 

banana pulp as a source of cloud components for the juice industry also revealed that 

banana pulp has a relatively high phenolic content (14 ± 0.2 mg GAE/100g edible portion) 

when compared to orange (10 ± 0.8 mg GAE/100g edible portion) (Koffi, Phillips, & 

Wicker, 2007). Mango phenolic contents of 23-160 mg GAE/100g FW (Table 2.8) are 

significantly higher than those for all banana cultivars on a fresh weight basis. However, 

significant variations in phenolic levels are observed cross banana cultivars from different 

origins. Phenolics in banana fruit pulp exist mainly in soluble free forms, where the 

concentration of free phenolics is 56 ± 2.8 mg GAE/100g edible portion (62.1%). In 

addition, banana fruit pulp contains significant levels of cell wall bound phenolics at 5 ± 

0.04 mg GAE/100g cell wall (ethyl acetate fraction) and 30 ± 0.4 mg GAE/100g cell wall 

(water-soluble fraction) (Sun, Chu, Wu, & Liu, 2002). 

 

Phenolic concentration and composition vary amongst mango cultivars. The phenolic 

contents of Ataulfo, Tommy Atkins, Haden and Kent cultivars are similar in several 

countries for each cultivar (Table 2.6) except for Kent from Spain where a significantly 

higher phenolic content has been detected (91 mg/100g FW) - almost twice the 
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concentration (33-49 mg/100g FW) reported for Kent mangoes from other countries. 

Manthey and Perkins-Veasie (2009) further investigated the influence of harvest dates and 

location on phenolic levels, and found that the Haden cultivar harvested in different months 

had a two-fold difference in phenolic content. In addition, significantly higher gallotannin 

contents occurred for fruits collected at later harvest dates in a number of locations. 

Furthermore, mangiferin concentrations in the Ataulfo cultivar harvested at later dates 

were much higher than those harvested at earlier dates. However, there is a large 

standard deviation for fruit-to-fruit variations within each set (Manthey & Perkins-Veazie, 

2009). Overall, no significant influence of harvest location was observed; in contrast, 

phenolic compound differences between cultivars were significantly larger than were the 

differences attributed to different harvest dates and locations, and countries of origin. 

Generally, mango contains substantially higher phenolic concentrations than bananas. 

However, bananas are more frequently consumed by the public (all year round) and also 

in larger quantities. Hence with an increased serving portion, the phenolic intake increases 

and may exceed that of the mango fruit, especially since mango is a seasonal fruit. The 

absolute quantity of phenolics present also varies with size of the fruit and the form in 

which it is eaten- freshly consumed or processed products. Apparently, whole mangoes 

have higher levels of phenolics when compared to fresh cut mangoes (Robles-Sanchez et 

al., 2011) or freeze dried mangoes (Shofian et al., 2011), suggesting losses on processing. 

 

Very few studies have investigated the specific composition of phenolics in bananas or 

mango flesh. Most studies focused on antioxidant activity or on the effects of harvest, 

location, storage or processing on the total polyphenol content of the fruit peel, seed, bark, 

leaf and to a lesser extent fruit pulp, rather than on the analysis of individual compounds. 

There are only four mango studies that have identified specific phenolic compounds and 

classes in mango pulp and peel, but there have been no reported studies on mango 

phenolics bioavailability. One study investigated the phenolic profiles of mangiferin, ellagic 

acid and gallotannin in five mango cultivars from the USA (Manthey & Perkins-Veazie, 

2009), while another identified the different classes of phenolic compounds in Australian 

Kent mangoes (Epriliati, 2008). Further, two other studies involved chromatographic 

separation of flavonols, xanthones and anthocyanins from nine international mango 

cultivars by Berardini et al. (2005b), and the isolation of mangiferin in Australian 

Kensington Pride mango (Hewavitharana et al., 2013b). So far, only mangiferin has been 

quantified in Kensington Pride and the full range of phenolic classes still remains to be 

explored.  
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Table 2.5. Total phenolic content (mg gallic acid equivalents/100g fresh weight), total flavonoid content (mg quercetin equivalents/100g 
fresh weight), total procyanidin content (µg procyanidin oligomers/g dry weight), gallocatechin and catechins (μg/100g dry weight) based 
on edible portions of ripe banana flesh. 
Banana 
cultivars/ 
varieties 

Country of 
origin 

Total phenolic 
content 

(mg GAE/100g 
FW) 

Total flavonoid 
content 

(mg QE/100g 
FW) 

Total procyanidin 
content 

(μg procyanidin 
oligomers/g DW) 

Specific phenolics 
(μg/100g DW) 

Reference 

Gallocatechin  (+)-Catechin (-)-Epicatechin 

Pisang Mas 
(Sucrier) 

Malaysia 14b - - - - - (Sulaiman et al., 2011 82) 

Kapas 5b - - - - - 
Berangan 
(Lakantan) 

13b - - - - - 

Rastali (Silk) 13b - - - - - 
Pisang Raja 20b - - - - - 
Pisang Nangka 34b - - - - - 
Pisang Awak 36b - - - - - 
Nipah (Saba) 36b - - - - - 

Gingeli Mauritius 12 ± 0.1b 0.6b - - - - (Luximon-Ramma, 
Bahorun, & Crozier, 2003) 

NR Spain - - - 100a (FW) 10a (FW) 10a (FW) (de Pascual-Teresa, 
Santos-Buelga, & Rivas-
Gonzalo, 2000) 

Flhorban920 Martinique 25-41b - - - - - (Bugaud, Alter, Daribo, & 
Brillouet, 2009) Grande Naine 

(Cavendish) 
10-17b - - - - - 

NR USA 90.4b - - - - - (Sun et al., 2002) 

NR Malaysia 24-72b 4.7-23b 
(CEQ/100g) 

- - - - (Alothman, Bhat, & Karim, 
2009) 

Pequena 
Enana 

Tenerife 0.87 ± 0.7a - - - 6330 ± 3650a - (Mendez, Forster, 
Rodriguez-Delgado, 
Rodriguez-Rodriguez, & 
Romero, 2003) 

Gran Enana 1.08 ± 0.8a - - - 6230 ± 3360a - 
NR Equador 1.06 ± 0.5a -  - - 10290 ± 

3570a 
- 

Figo Brazil 8 ± 0.1b (DW) 41b 2 ± 0.2b 37 ± 1a 76 ± 11.2a 56 ± 3a (Bennett et al., 2010) 
Nanicao 10 ± 0.2b (DW) 44b 4 ± 0.9b 542 ± 17a 59 ± 2.6a 460 ± 16a 
Terra 7 ± 0.1b (DW) 30b 20 ± 0.1b 418 ± 23a 39 ± 2.2a 92 ± 5a 
Mysore 10 ± 0.2b (DW) 120b 86 ±0 .6b 255 ± 11a 143 ± 7.4a 214 ± 10a 
Pacovan 7 ± 0.2b (DW) 83b 2 ± 0.2b 295 ± 22a 69 ± 9.4a 34 ± 6a 

 -: Values not detected or not reported, GAE: gallic acid equivalents, QE: quercetin equivalents, FW: fresh weight, DW: dry weight. aValues obtained via HPC 

analyses. bValues obtained via Folin-Ciocalteu assay or other spectrophotometric assays. 
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Table 2.6. Total phenolic content (mg gallic acid equivalents/100g fresh weight), total 
flavonoid content (mg RE/100g dry weight) and β-carotene content (µg/100g fresh weight) 
based on edible portions of ripe mango flesh. 

Mango cultivars/ 
varieties 

Country of 
origin 

Total phenolic 
content 

(mg GAE/100g 
FW) 

Total flavonoid 
content 

(mg RE/100g 
DW) 

β-carotene 
content 

(µg/100g FW) 

Reference 

Irwin Korea 2690 ± 376b 
(DW) 

330 ± 79 - (Kim et al., 2010) 

R2E2 Australia 1347b (DW) - - (Daud et al., 2010) 
- 430 ± 60 - (Berardini et al., 

2005b) 

Tommy Atkins Mexico - - 580a (Mercadante & 
Rodriguez-Amaya, 
1998) 

24b - 581c (Manthey & 
Perkins-Veazie, 
2009) 

Germany - - 3440a, 4590a 
(DW) 

(Pott et al., 2003b) 

- - 324-383a (Vasquez-
Caicedo, Schilling, 
Carle, & Neidhart, 
2007) 

Brazil - 460 ± 10 - (Berardini et al., 
2005b) 

- 270 ± 10 - (Ribeiro, Barbosa, 
Queiroz, Knodler, 
& Schieber, 2008) 

24b - 490a (Manthey & 
Perkins-Veazie, 
2009) 

Ecuador 36b - 445a (Manthey & 
Perkins-Veazie, 
2009) 

Peru 30.6b - 507a 

Kent Germany - - 5700a, 5740a 
(DW) 

(Pott et al., 2003b) 

Mexico 33b - 2178a (Manthey & 
Perkins-Veazie, 
2009) 

Ecuador 34b - 1230a 
Peru 49b - 838a  
Spain 91b - 1600c (Robles-Sanchez, 

Rojas-Grau, 
Odriozola-
Serrano, 
Gonzalez-Aguilar, 
& Martin-Belloso, 
2009b) 

Keitt Mexico - - 1340-1620a (Mercadante, 
Rodriguez-Amaya, 
& Britton, 1997) 

- - 670a (Mercadante & 
Rodriguez-Amaya, 
1998) 

30b - 1038a (Manthey & 
Perkins-Veazie, 
2009) 

José La Réunion - 4780 ± 270 - (Berardini et al., 
2005b) Mini-mango Colombia - 300 ± 50 - 

Haden Mexico - - 400-2800a (Ornelas-Paz, 
Yahia, & Gardea, 
2007) 

31b - 811a (Manthey & 
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Perkins-Veazie, 
2009) 

Peru - 1620 ± 270 - (Berardini et al., 
2005b) 

54b - 494a (Manthey & 
Perkins-Veazie, 
2009) 

Brazil 48b - 191a (Ribeiro et al., 
2007) 

- 350 ± 10 - (Ribeiro et al., 
2008) Ubá - 3390 ± 130 - 

209b - 2220a (Ribeiro et al., 
2007) Palmer - - 661.27a 

Ataulfo Mexico - - 3160a, 7480a (Ornelas-Paz, 
Yahia, & Gardea, 
2007) 

109b - 2610a (Manthey & 
Perkins-Veazie, 
2009) 

125b, 
160b 

- 4530a, 
4720a 

(Robles-Sanchez 
et al., 2009a) 

111 ± 1b, 
116 ± 1b 

17 ± 0.9, 
11 ± 0.2 

(mg QE per 
100g FW) 

303a,  
447a 

(Robles-Sanchez 
et al., 2011) 

125b,  
160b 

17 
(mg QE per 
100g FW) 

- (Gonzalez-Aguilar, 
Wang, Buta, & 
Krizek, 2001) 

Kensington 
Pride 

Australia - - 6240a (Amitha, 2011) 

Kaew Thailand - - 5117a (Vasquez-Caicedo 
et al., 2005) 

- - 10300a, 
13910a (DW) 

(Pott et al., 2003b) 

Chok Anan - - 4044a (Vasquez-Caicedo 
et al., 2005) Maha Chanok - - 6107a 

Kiew Sawoei - - 1349a 
Rad - - 1438a 
Mon Duen Gao - - 1413a 
Okrang Thong - - 1284a 
Okrang Kiew - - 610a 
Nam Dokmai - - 6140a 

- - 3940a, 4640a 
(DW) 

(Pott et al., 2003b) 

NR Malaysia 100 ± 9b 
 

- 660 ± 61a (Shofian et al., 
2011) 

Black Gold  - - 615c (Siong & Lim, 
1991) 

USA - - 553a (Khoo et al., 2011) 

NR USA - - 445a (Holden et al., 
1999) 

NR Indonesia - - 1710 ± 950a (Khoo et al., 2011) 
Gedong - - 3267 ± 2075a 
Manalagi - - 190 ± 123a 
Indramayn - - 1606 ± 166a 
Harum Manis - - 1080 ± 264a 
Golek - - 1237 ± 626a 

-: Values not detected or not reported, GAE: gallic acid equivalents, QE: quercetin equivalents, FW: fresh 
weight, DW: dry weight. aValues obtained via HPC analyses. bValues obtained via Folin-Ciocalteu assay. 
cValues obtained via direct spectrophotometry method (450 nm).  
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Phenolics can be classified into flavonoids and non-flavonoids. Flavonoids contain a C6-

C3-C6 3-ring structure, while the non-flavonoids group of phenolics is classified according 

to the number of carbon atoms, and includes hydroxycinnamic acids, hydroxybensoic 

acids, xanthones and hydrolysable tannins. There are other classes of flavonoids such as 

anthocyanins and non-flavonoids such as flavones, stilbenes, etc, but these will not be 

discussed here, as they have not been reported to occur in banana or mango flesh. 

 

2.2.2.1. Flavonoids 

Flavonoids are low molecular weight compounds consisting of fifteen carbon atoms; two 

aromatic (A and B) rings enclosing a 3-carbon bridge that is usually a heterocyclic pyran 

ring (C ring) with oxygen (Fig 2.7). Structural variations are due, in part, to the degree and 

pattern of hydroxylation, methoxylation, prenylation or glycosylation (Jorge, 2006; Stalikas, 

2007). In plants and fruits, flavonoids are usually present as glycosides; sugar substitution 

on the flavonoid skeleton occurs through the hydroxyl groups of aglycones in the case of 

O-glycosides or directly to carbon atoms in the ring A of C-glycosides. The more common 

carbohydrates are rhamnose, glucose, galactose, arabinose or glucuronic acid (de Rijke et 

al., 2006). Among the classes of flavonoids, of particular interest are flavonols, flavanols, 

flavanones and proanthocyanidins, which are the major classes in banana flesh and 

mango flesh across various cultivars (Table 2.7). 

 
Figure 2.7. Chemical structures of the flavonoid families. The basic generic flavonoid 
structure showing the A-, B- and C-rings, and the numbers of the various positions in the 
flavan structure (Fraga & Oteiza, 2011). 
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Flavonols. The flavonols identified in mango include quercetin, kaempferol, isoquercitrin 

(quercetin-3-glucoside) and astragalin (kaempferol-3-glucoside) (Fig 2.8). This group is 

most abundant among the flavonoids in mango fruit. Quercetins are largely responsible for 

the slight yellow colour of many fruits, flowers and vegetables (Jorge, 2006). Quercetin has 

been identified in unripe mango, and previously identified in tender fruits, and in mature 

fruits along with its glycosides, but these disappear on ripening (El Ansari, Reddy, Sastry, 

& Nayudamma, 1969). Flavonols are mainly accumulated in the outer fruit tissues, since 

their synthesis is stimulated by sunlight (Manach, Scalbert, Morand, Remesy, & Jimenez, 

2004); thus, climate conditions affect flavonol levels in mango. Factors such as fruit 

maturity and postharvest handling also affect the flavonol content. Quercetin is the main 

flavonoid present in mango while flavones are less common (Masibo & He, 2008) and 

occur in foods as O-glycosides with sugars bound at the C3 position.  

 
Basic flavonol structure 

  
Astragalin       Quercetin        Isoquercitrin        Kaempferol 

 
Figure 2.8. Structures of flavonols. 

 

In Ataulfo mango (Table 2.7), quercetin and catechin (flavanol) are the major flavonoids 

(Gonzalez-Aguilar et al., 2001; Shivashankara, Isobe, Al-Haq, Takenaka, & Shiina, 2004). 

In Kent mango, quercetin was also detected as the main flavonoid, followed by kaempferol 

(Robles-Sanchez et al., 2009a; Robles-Sanchez et al., 2009b). A kaempferol glycoside 

and five quercetin glycosides are components of mango puree with the predominant 

glycosides being quercetin-3-galactoside (2.2 mg/100g), quercetin-3-glucoside (1.6 

mg/100g) and quercetin-3-arabinosidde (0.5 mg/100g), while the predominant phenolic 

acid is gallic acid (0.69 mg/100g) followed by mangiferin (0.44 mg/100g) (Schieber, Ullrich, 

& Carle, 2000). Quercetin aglycon was present at 0.35 mg/100g (Schieber, Ullrich, & 

Carle, 2000). Quercetin-3-galactoside (0.66 mg/100g) and quercetin-3-glucoside (0.56 

mg/100g) are present in Haden mango pulp (Berardini et al., 2005b).  
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Table 2.7. Relative amounts of phenolic compounds in different cultivars of mango flesh. 
Mango 
cultivars/ 
varieties 

Country 
of origin 

Phenolic compounds Reference 

Xanthones Phenolic 
acid 

Flavonoids 

Mangiferin 
(µg/g FW) 

Iso- 
mangiferin 
(µg/g DW) 

Ellagic 
acid 

(µg/g FW) 

Quercetin 
-3-O-gal 

(µg/g DW) 

Quercetin 
-3-O-glu 

(µg/g DW) 

Haden Mexico 37.3 - 75.4 - - (Manthey & 
Perkins-
Veazie, 
2009) 

Brazil 16.2 ± 2.7 

(DW) 
- - 6.6 ± 0.4 5.6 (Berardini 

et al., 
2005b) 

2.9 ± 0.1 ND - ND 0.6 (Ribeiro et 
al., 2008) 

Keitt Mexico 2.8 ± 5.2 - 92.4 - - (Manthey & 
Perkins-
Veazie, 
2009) 
 

Kent Mexico 10.45 - 190 - - 
Eucador tr - tr - - 
Peru 110.2 ± 

116.3 
- 2385 - - 

Tommy 
Atkins 

Mexico 0-182.7 ± 
197.3 

- 112.1 - - 

Brazil 
 

2.2 ± 0.1 0.5 - ND ND (Ribeiro et 
al., 2008) 

4.6 ± 0. 1 
(DW) 

- - - - (Berardini 
et al., 
2005b) 

Ataulfo Mexico 556.28 - 102.93 - - (Manthey & 
Perkins-
Veazie, 
2009) 

José La 
Réunion 

19.4 ± 0.2 
(DW) 

- - - - (Berardini 
et al., 
2005b) R2E2 Australia 4.3 ± 0.6 

(DW) 
- - - - 

Mini-mango Colombia 3.0 ± 0.5 

(DW) 
- - - - 

Ubá Brazil 12.4 ± 
0.3, 

46.5 ± 4.7 

1.1 ± 0.1 - 2.5 ± 0.2 6.3 ± 0.4 (Ribeiro et 
al., 2008) 

Kensington 
Pride 

Australia 0.5 (DW) - - - - (Amitha, 
2011) 

-: Values not reported, ND: not detected, tr: trace, FW: fresh weight, DW: dry weight. All values were 
obtained via HPLC analyses.  

 

Flavanones. Flavanones contain a saturated 3-carbon chain and an oxygen atom in the 

C4 position, and are usually glycosylated at position 7 with a disaccharide, or less 

frequently with a monosaccharide (e.g. glucose) (Tomas-Barberen & Clifford, 2000). 

Naringin (naringenin 7-O-rhamnoglucoside) (Fig 2.9) and naringin 7-O-neohesperoside 

have been previously identified in banana pulp (Aurore, Parfait, & Fahrasmane, 2009; 

Mendez et al., 2003). 
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Basic structure of flavanone   Naringin 

 
Figure 2.9. Structures of flavanones. 

 

Flavanols. Flavanols or flavan-3-ols have a hydroxyl group on the C3-ring and occur only 

as aglycones in fruits. The flavanols identified in banana and mango (Fig 2.10) are present 

as monomers or as proanthocyanidins. Various soluble flavanols have been identified in 

banana fruit including (+)-catechin, (-)-epicatechin and (+)-gallocatechin monomeric and 

oligomeric flavanols (Aurore, Parfait, & Fahrasmane, 2009; Bennett et al., 2010; de 

Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000; Mendez et al., 2003), and they 

are thought to comprise the bulk of the flavonoids in banana. Collectively, the monomers 

are referred to as catechins. Catechins are reported to be very reactive when exposed to 

atmospheric oxygen (Jorge, 2006). Significant increases in (+)-catechin and (-)-

epicatechin have been reported in some Brazilian cultivars after harvest (Mendez et al., 

2003). The changes in flavanol levels following harvest and ripening are assumed to be 

due to their incorporation into condensed tannins or catabolic processes (Bennett et al., 

2010). Flavanols identified in mango include (+)-catechin, (-)-epicatechin, (+)-gallocatechin 

and (-)-epigallocatechin. Little information on other flavonoids or their concentrations has 

been reported for mango. 

 
 

Basic structure of flavanol 

           
(+)-Catechin             (-)-Epicatechin        (+)-Epigallocatechin   (-)-Epigallocatechin 

     gallate 
Figure 2.10. Structures of flavanols. 
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Proanthocyanidins. Proanthocyanidins (PAs), also referred to as condensed tannins, are 

oligomeric and polymeric flavanols (Fig 2.11) linked through the C4-C8 bond. 

Proanthocyanidins are reported to be colourless when their chain is short, and they turn 

yellowish to brown with increasing polymerisation (Jorge, 2006). When heated in acidic 

medium, PAs transform into the corresponding anthocyanidins. These flavanols could be 

esterified with gallic acid to form 3-O-gallates. PAs can be divided into three groups 

according to their hydroxylation patterns- prodelphinidins, propelargonidins and 

procyanidins with the latter being the most common. Soluble tannins (4 mg/100g FW) were 

quantified using HPLC in banana samples from Virginia, USA (Gu et al., 2003), and were 

identified as monomers, dimers, trimers and oligomers of the procyanidin type. In addition, 

homogenous B-type procyanidins (C4-C6 linkage) were identified in the banana samples 

(Gu et al., 2003). Gallocatechin-catechin dimers were measured in Spanish bananas, 

using a post-column derivatisation HPLC procedure at a level of 0.14 mg/100g FW (de 

Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000). Another study identified PAs in 

soluble extracts of Spanish banana pulp, but no free hydroxycinnamic acid, ferulic acid, 

soluble anthocyanidins, anthocyanins or naringin were detected (Bennett et al., 2010).  

 

 
Figure 2.11. Structure of an example oligomeric proanthocyanidin. 

 

2.2.2.2. Non-flavonoids (Other phenolics) 

Some non-flavonoid phenolics occur in considerable levels in banana and mango. 

Xanthones, hydroxycinnamic acids, hydroxybenzoic acids and hydrolysable tannins are 

the main examples in mango and banana. 

 

Xanthones. Xanthones, generally called C-glucosyl xanthones are heat stable molecules 

that are widely distributed in higher plants. Mangiferin (C2-β-D-glucopyranosyl-1,3,6,7-

tetrahydroxyxanthone) (Fig 2.12) was first isolated from mango plant leaves, while 

homomangiferin was quantified in the mango plant bark (Masibo & He, 2008) at higher 

levels. In a polyphenol screening of twenty mango cultivars, Saleh and El Ansari (1975) 
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identified the co-occurrence of mangiferin, isomangiferin and homomangiferin in mango 

fruit pulp. Schieber et al. (2005) investigated the xanthone glycosides in the flesh of nine 

different mango cultivars from Brazil, Peru, La Réunion, Colombia, Australia, Thailand and 

Kenya, and found that mangiferin levels were highest in Haden and José, while in other 

cultivars (Kent, Heidi, Manila and Ngowe), mangiferin was not detected at all. 

Hewavitharana (2013) reported that the Kensington Pride cultivar has 0.5 µg/g DW 

mangiferin (mean of 2.65 µg/g mangiferin in one mango). Besides this detection of 

mangiferin, no other phenolic studies on the Kensington Pride cultivar have been reported. 

Factors such as agroclimate, growing conditions, exposure to UV radiation, the ripening 

stage, and postharvest and storage conditions may all contribute to variations in the 

phenolic content and composition of mango, and thus inter-fruit variability (Manthey & 

Perkins-Veazie, 2009; Ornelas-Paz et al., 2008; Ornelas-Paz, Yahia, & Gardea, 2007; 

Talcott et al., 2005; Veda, Platel, & Srinivasan, 2007; Wilkinson et al., 2011). 

 

 
     
Figure 2.12. Structure of mangiferin. 

 

Hydroxycinnamic acids. Hydroxycinnamic acids are found in all parts of fruits and 

vegetables even though the highest concentrations are observed in the outer parts of 

mature fruits, and their concentration decreases during ripening (Manach et al., 2004). 

These acids are aromatic compounds with a 3-carbon side chain (C6-C3). They have been 

shown to occur in banana cell walls with high levels of trans-ferulic acid (5.4 mg/100g FW) 

and low levels of ρ-coumaric acid (0.46 mg/100g FW) and caffeic acid (0.2 mg/100g FW) 

being reported (Mattila, Hellstrom, & Torronen, 2006). m-Coumaric acid, ρ-coumaric acid 

and ferulic acid (Fig 2.13) have been also identified in mango (Kim, Brecht, & Talcott, 

2007). Flavonol glycosides acylated with these phenolic acids are found in fruits (Shahidi & 

Naczk, 2004). 

   
      ρ-Coumaric acid    Ferulic acid               Caffeic acid 

 
Figure 2.13. Structures of hydroxycinnamic acids. 
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Hydroxybenzoic acids. Hydroxybenzoic acids have a C6-C1 structure with a carboxyl 

group linked to the benzene ring. Hydroxybenzoic acids are found in banana (e.g. gallic 

acid) (Aurore, Parfait, & Fahrasmane, 2009; Bennett et al., 2010; de Pascual-Teresa, 

Santos-Buelga, & Rivas-Gonzalo, 2000), and in mango flesh where more studies have 

been reported. The phenolic acids identified in mango include gallic acid and ellagic acid 

(Fig 2.14). Gallic acid was identified as the major phenolic acid in mango, followed by six 

hydrolysable tannins, which together constituted approximately 98% of the total 

polyphenols identified in Tommy Atkins mango (Florida), along with four minor 

hydroxycinnamic acids (Kim, Brecht, & Talcott, 2007). In another study of Tommy Atkins 

mango, gallic acid was again identified as the predominant phenolic acid in mango flesh, 

along with four gallic acid precursors in the form of hydrolysable tannins (Talcott et al., 

2005). ρ-Hydroxybenzoic acid (20.7 mg/100g DW), ρ-coumaric acid (2.3 mg/100g DW) 

and two ellagic acid glycosides (<0.5 mg/100g DW) were identified in different stages in 

fully-ripe mango (day 12-20). Gallic acid and their hydrolysable tannins were found to 

significantly decrease throughout fruit ripening from mature-green to fully ripe stages, but 

were unaffected by hot water treatment (46°C for 75 min). Gallic acid concentration 

decreased by 22% and hydrolysable tannins decreased by 57% during storage and 

ripening (Kim, Brecht, & Talcott, 2007). In contrast, Talcott et al. (2005) reported a 34% 

increase in the total hydrolysable tannins concentration in the cultivar Tommy Atkins as the 

fruit ripened, indicating that appreciable differences may occur among fruit cultivars grown 

under different growing conditions (soil, fertilisation and cultivation practices) or harvest 

periods. Several studies have shown that climacteric fruits such as mango experience 

large changes in phenolic content and composition during ripening, especially following 

respiratory climacteric and shikimic acid pathway activity. Schieber, Ullrich, and Carle 

(2000) reported there was no evidence of ellagic acid and gallic acid dimers or trimers in 

mango puree, and suggested that these depsides were hydrolysed as a consequence of 

heating, acidification or enzymatic treatment. This suggestion was further supported by the 

detection of aglycones quercetin and kaempferol. Cultivar-dependent differences and 

changes in phenolic patterns during fruit development have to be considered. 

 

   
Gallic acid          Ellagic acid 

 
Figure 2.14. Structures of hydroxybenzoic acids. 
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Hydrolysable tannins. Hydrolysable tannins are mainly gallic acid glucose esters and 

high molecular weight compounds. Two types are known- gallotannins, which yield only 

gallic acid upon hydrolysis, and ellagitannins, which produce ellagic acid as the common 

degradation product. Presently, hydrolysable tannins have not been detected in banana 

but are found in mango flesh. Tannins occur in ripe mango either as gallotannins (gallic 

acid component) or other phenolic acids derived from the oxidation of the galloyl residue of 

ellagitannins (Masibo & He, 2008). Hydrolysable tannins are derivatives of phenolic acids, 

and their occurrence appears more limited compared to condensed tannins. Some 

components of the hydrolysable tannins in mango flesh include digallic acid and β-

glucogallin (Fig 2.15). A chromatographic study of the phenolic profiles of five mango 

varieties (Tommy Atkins, Haden, Kent, Keitt and Ataulfo) was consistent, with the 

occurrence of hydrolysable gallotannins as the major phenolic along with low 

concentrations of gallic acid, tetragalloyl glucose, and conjugates of ellagic acid and 

mangiferin (Manthey & Perkins-Veazie, 2009).  

 

   
Digallic acid    β-glucogallin 

 
Figure 2.15. Structures of hydroylsable tannins. 

 

2.2.3. Research on nutritional health benefits of carotenoids and polyphenols 

Numerous studies have shown an association between the consumption of fruits that are 

rich in carotenoids, flavonoids and some phenolic acids, and reduced risks of several 

chronic diseases. Although the health benefits of fruit consumption are strongly indicated 

from studies of diet and disease, it is not certain what role individual fruit types can play, 

particularly tropical fruits. Many studies have characterised molecular components and 

linked these with specific bioactivities as a means of defining the potential health benefits 

of consuming specific fruits or vegetables. However, cultivar and individual fruit differences 

have also been reported in some studies that evaluated the bioactivity of fruits (Wilkinson 

et al., 2011). It is expected that the presence or concentrations of many components would 

change with maturity level, but there is less information available on the variation of the 

many secondary metabolites that are likely to contribute to a range of bioactivities. Such 

differences in bioactive levels or the activity of extracts between individual fruits of the 
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same cultivar has received less attention in the context of tropical fruits such as mangoes 

or bananas. Here, the fruit size may contribute to these differences, which has particular 

significance for bioavailability studies.  

 

2.2.3.1. Carotenoids 

Epidemiological studies have shown an inverse correlation between the consumption of 

carotenoid-rich vegetables and fruits, and the incidence of: cancers including lung, breast, 

prostate, and those affecting the gastrointestinal tract (gastrointestinal tract) (Bowen, 

Mobarhan, & Smith, 1993; Gerster, 1993; Kant, Block, Schatzkin, & Nestle, 1992; Kiokias 

& Gordon, 2004; Mayne, 1996) and the cardiovascular system (Kim et al., 2008; Krinsky, 

1998; Murr et al., 2009; Yeum, Beretta, Krinsky, Russell, & Aldini, 2009); diabetes (Yeum 

& Russell, 2002); some inflammatory diseases (Perera & Yen, 2007);  and age-related 

macular degeneration (Seddon et al., 1994; Snodderly, 1995). In addition, there is also 

considerable experimental evidence that major dietary carotenoids prevent or delay 

carcinogenesis at many sites (International Agency for Research on Cancer, 1998). Other 

biological functions attributed to carotenoids include influencing gene expression and 

immune function (de la Rosa, Alvarez-Parrilla, & Gonzalez-Aguilar, 2010). 

 

In these diseases, free radical damage is thought to play a role in their pathophysiology 

(Boon et al., 2010; Diplock, 1991; Krinsky, 2001). The most established antioxidant 

function is singlet oxygen-quenching capacity, which is able to explain the efficacy of β-

carotene for skin protection in light-sensitive individuals (Heinen et al., 2007; Van den Berg 

et al., 2000). The ability of carotenoids to quench singlet oxygen is related to their 

conjugated double-bond system and maximum protection is given by those carotenoids 

having nine or more double bonds (Foote, Chang, & Denny, 1970).  

 

The most documented function of some carotenoids is their provitamin A activity. Once 

converted to vitamin A, derived health benefits include the maintenance of normal eye 

health, epithelial function, embryonic development and immune system function (Diplock, 

1991). Xanthophylls do not possess vitamin A potency, but they are the only carotenoids 

present in human retinal pigment epithelium, in contrast to other body sites where all 

carotenoids occur (Bone, Landrum, Hime, Cains, & Zamor, 1993).  Xanthophylls probably 

function as blue light filters and singlet oxygen quenchers (Seddon et al., 1994).  
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Fruit-derived provitamin A carotenoids have higher bioavailability and bioefficacy for 

conversion to vitamin A compared to those in green vegetables, presumably due to the 

chlorophyll-carotenoid or protein-carotenoid complexes in the chloroplasts (West & 

Castenmiller, 1998). Recent research has shown that β-carotene from some plant sources 

has a lower bioavailability than once thought, i.e. dark green leafy vegetables may provide 

only 1 µg of vitamin A from 26 µg of β-carotene (de Pee et al., 1998). Previously, it was 

accepted that dark green leafy vegetables had a greater bioavailability, providing the same 

amount of vitamin A from a smaller amount of β-carotene (6µg). However, the 

bioavailability of β-carotene in orange and yellow fruits and tubers is greater than its 

bioavailability from dark green leafy vegetables; the ratios have now been set at 12 µg of 

β-carotene to 1 retinol activity equivalent (RAE) and 24 µg of other provitamin A 

carotenoids to 1 RAE (de Pee et al., 1998; Institute of Medicine, 2001). It is likely that 

orange and orange-yellow fruits would have a significant impact on improving vitamin A 

status.  These differences may result from differences in intracellular location of 

carotenoids. In leaves, carotenoids are present in chloroplasts whereas in fruits, they are 

located in chromoplasts. This has led to speculation that chloroplasts may be less 

efficiently disrupted in the intestinal tract than chromoplasts (de Pee et al., 1998).  

 

As β-carotene accounts for more than half of the total carotenoid content in most mango 

cultivars, this suggests that mango fruit substantially contributes to the provitamin A supply 

in tropical and subtropical countries. Therefore, it is important to learn about the variety 

and levels of carotenoids in mango, especially in Kensington Pride, which have not yet 

been reported. Although ripe mangoes have significantly higher carotenoid concentrations 

than bananas, it is noteworthy that mangoes are seasonal fruits, being available for only 

four to five months a year (in Australia), and may not be a year-round better source of 

provitamin A than bananas. 

 

Among mango carotenoids, β-carotene is considered to be of higher provitamin A 

relevance since α-carotene, all-trans- and cis-β-cryptoxanthin are found at lower levels 

(Mercadante & Rodriguez-Amaya, 1998). As precursors of vitamin A (retinol), the 

presence of at least one unsubstituted β-ionone ring is a prerequisite for this biological 

property. All-trans-β-carotene has the highest provitamin A capacity, as it possesses two 

β-rings and may be cleaved theoretically into two molecules of retinal in the intestine by 

the enzyme β-carotene 15,15’ monooxygenase (During, Smith, Piper, & Smith, 2001; 

Schieber & Carle, 2005). Carotenes in the all-trans form have higher bioavailability than 
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the cis-isomers, with β-carotene having the highest theoretical bioconversion rates at 

100% on a weight basis (Rodriguez-Amaya, 2001; West & Castenmiller, 1998). 

Quantifying the proportion of cis-β-carotene isomers is essential in provitamin A 

estimation, since the efficiency of β-carotene conversion into vitamin A is only 53% and 

38% for 13-cis-and 9-cis-β-carotene respectively (Vasquez-Caicedo et al., 2005).  

Banana is reported to be a poor source of vitamin A (Helen Keller International, 1993), 

which may be true for Cavendish, the primary banana cultivar marketed globally but is not 

correct for other cultivars and varieties. There is a huge diversity in the Musa family with 

respect to carotenoids and their provitamin A contents. Some banana cultivars in the 

Federated States of Micronesia and other Pacific island countries have among the highest 

carotenoid levels, and these bananas are capable of meeting the estimated daily vitamin A 

requirements from one to three fruits (Englberger et al., 2003d; Englberger et al., 2003a). 

This suggests existing provitamin A-rich Musa varieties could have significant long term 

beneficial health impacts for vitamin A deficient populations, particularly in regions where 

banana fruits are part of a staple diet (Davey, Garming, Ekesa, Roux, & Van den Berg, 

2008; Davey, Mellidou, & Keulemans, 2009; O'Neill et al., 2001). Although the carotenoid 

content of Cavendish may be low, the high frequency and quantity of its consumption 

makes the Cavendish banana a potentially important source of provitamin A carotenoids. 

 

2.2.3.2. Polyphenols 

The bioavailability of polyphenols differs greatly amongst subclasses, so the most 

abundant phenolics in the human diet may not necessarily lead to the highest 

concentrations of active metabolites in target tissues. One of the main objectives of 

bioavailability studies is to determine which phenolics are better-absorbed and, which of 

these leads to the formation of active metabolites. 

 

It is essential to determine the nature and distribution of these compounds in the human 

diet. This will allow evaluation of dietary polyphenol intake and enable more precise 

epidemiologic analysis that can lead to a better understanding of the relationship between 

the intake of these compounds and the risk of the development of several diseases. 

Furthermore, not all carotenoids or phenolic compounds are absorbed with equal efficacy. 

Phenolics are extensively metabolised by intestinal and hepatic enzymes, and (if not 

absorbed by the end of the small intestine) by the microbiota of the large intestine. 

Knowledge of the bioavailability and metabolism of various phenolics is necessary to 

evaluate their biological activity within target tissues. 
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Phenolic compounds are receiving much current attention because of their beneficial 

health effects related to their biological and pharmacological properties: anti-inflammatory, 

anti-mutagenic, anti-carcinogenic, anti-allergenic, neuro-protective, anti-thrombotic 

properties, and cardio-protective and vasodilatory effects. Phenolic subclasses are thought 

to be effective in preventing cardiovascular disease by:  acting as antioxidants (Kahkonen 

et al., 1999; Merken & Beecher, 2000; Shahidi & Naczk, 2004; Takahama, Oniki, & Hirota, 

2002; Tsao & Deng, 2004); reducing chronic inflammation; improving endothelial function 

by up-regulating eNOS expression and increasing production of endothelial cell nitric oxide 

(Daud et al., 2010; Erdman et al., 2007; Fraga & Oteiza, 2011).  Phenolics reduce 

coronary heart disease mortality (Hertog et al., 1995; Kappus, 1985; Peri et al., 2005; 

Santos-Buelga, Escribano-Bailon, & Lattanzio, 2011; Steffen, Gruber, Schewe, & Sies, 

2008) by suppressing low-density lipoprotein (LDL) oxidation (Meyer, Heinonen, & Frankel, 

1998). In addition, phenolics exhibit modulation of cancer-protein functions and agonism or 

antagonism of carcinogenesis-related receptors e.g. epidermial growth factor (Agullo et al., 

1997), atylhydrocarbon receptor (Ashida, Fukuda, Yamashita, & Kanazawa, 2000) and 

estrogen receptor β (An et al., 2001).  

 

While recent data has shown a strong correlation between serum triacylglyceride levels 

and coronary atherosclerosis (Hamsten et al., 2005), it has been reported that mangiferin 

ameliorates hyperlipidemia (Guo et al., 2011) and decreases triacylglyceride levels during 

animal model studies (Muruganandan, Lal, & Gupta, 2005b; Muruganandan, Srinivasan, 

Gupta, Gupta, & Lal, 2005a). In vitro studies have shown that mangiferin provides 

antioxidant (Aderibigbe, Emudianughe, & Lawal, 2001; Darvesh, Carroll, Bishayee, 

Geldenhuys, & Van der Schyf, 2010; Garcia-Rivera, Delgado, Bougarne, Haegeman, & 

Berghe, 2011; Muruganandan, Gupta, Kataria, Lal, & Gupta, 2002; Viswanadh, Rao, & 

Rao, 2010; Yoshikawa et al., 2001), anti-diabetic (Masibo & He, 2008), immune-

stimulating (Guha, Ghosal, & Chattopadhyay, 1996; Sanchez et al., 2000; Yoshikawa et 

al., 2002) and anti-viral properties (Zheng & Lu, 1990), while also protecting hepatocytes, 

lymphocytes, neutrophils and macrophages from oxidative stress (Amazzal, Lapotre, 

Quignon, & Bagrel, 2007; Jagetia & Baliga, 2005; Pourahmad, Eskandari, Shakibaei, & 

Kamalinejad, 2010).  

 

Several In vitro studies suggest that catechins have beneficial effects owing to the 

following: (1) their free radical scavenging and antioxidant activities (Augustyniak, 

Waszkiewicz, & Skrzydlewska, 2005; Rodriguez et al., 2006), (2) their protection against 



 

 34 

congestive heart failure (Ishikawa et al., 1997), cancer (Chieli, Romiti, Rodeiro, & Garrido, 

2010; Fraga & Oteiza, 2011; Rajendran, Ekambaram, & Sakthisekaran, 2008; Yamanaka, 

Oda, & Nagao, 1997), and renal failure (Korish & Arafah, 2008), (3) their reduction in the 

incidence of myocardial ischemia (Modun, Music, Katalinic, Salamunic, & Boban, 2003; 

Suzuki et al., 2010; van Jaarsveld, Kuyl, Schulenburg, & Wild, 1996), and (4) their support 

of anti-aging processes (Drouin et al., 2011; El Gharras, 2009).  In addition, quercetin has 

vasodilator and anti-hypertensive effects (Erdman et al., 2007), and reduces the vascular 

remodeling associated with elevated blood pressure in spontaneously hypertensive rats 

(Duarte et al., 2001).  

 

In vitro studies of mangiferin, together with catechin and epicatechin, show that these 

compounds protect human T lymphocytes from T cell receptor (TCR)-induced cell death 

(AICD) (Hernandez, Rodriguez, Delgado, & Walczak, 2007), and contribute to the 

protective effects of reducing iron neurotoxicity in cells. However, the effects of these 

phenolics are not equal, with the order of activity being classified as catechin > epicatechin 

> mangiferin. The quantities of these compounds may vary among mango cultivars, with 

their prevalence determining the predominant action. In contrast to mango, there are few 

studies that detail the effects of banana phenolics on human or animal health. Gorinstein 

et al. (1999) found that mango is one of the fruits with the highest content of gallic acid 

among tropical fruits, higher than pineapple, wax apple, guava, rambutan and lichi. More in 

vitro and in vivo studies are needed for banana and mango fruits to ascertain the fruit-

related effects of phenolic compounds.  

  

2.3. Bioaccessibility and bioavailability of carotenoids and polyphenols 

2.3.1. Principles of in vitro models  

To predict phytonutrient bioavailability, human studies would be most appropriate but there 

are technical and ethical limitations. For example, high inter-individual variation in plasma 

concentrations has been reported, suggesting that absorption, distribution and elimination 

of carotenoids and phenolic compounds is influenced by genetic, metabolic and 

physiological factors. Large numbers of subjects in human trials are often required to 

achieve statistical significance, which makes these studies expensive, time-consuming 

and labour-intensive. There are also possible interactions of these phytonutrients with 

other components in the diet, leading to further difficulties in studying the target 

phytonutrient classes. 
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Interpretation of in vivo biological activity of phytonutrients first requires an understanding 

of their bioavailability based on in vitro data. In vitro gastrointestinal digestion, colonic 

fermentation and absorption models have been commonly used to predict the effects of 

food matrix, processing methods and dietary components on digestive stability, 

bioaccessibility, microbial degradation and intestinal uptake of dietary carotenoids and 

polyphenols. Depending on the type of research question and substrates, in vitro models 

can be designed to simulate different phases of digestion. The upper intestinal models are 

used for measuring the ‘removal’ of digestible components and changes in non-digestible 

components, while in vitro colonic models elucidate the role of microbial fermentation in 

the metabolism of the non-digestible parts of the diet. In addition, in vitro absorption 

models using human intestinal cell lines (Hilgers, Conradi, & Burton, 1990; Sambuy et al., 

2005), animal brush border membrane vesicles (Moore, Gugger, & Erdman, 1996) or 

animal intestinal everted sacs (Barthe, Woodley, & Houin, 1999; Wolffram, Block, & Ader, 

2002) have been carried out to understand mimic cellular uptake and transport of 

phytonutrients (During & Harrison, 2001) 

 

2.3.1.1. Mastication 

A harmonised static in vitro digestion method (Minekus et al., 2014) consisting of an oral, 

gastric and small intestinal phase was recently proposed by the INFOGEST network to aid 

in the comparison of in vitro digestion studies amongst international labs. The study 

acknowledged that chewing and the consequent particle size reduction is a major 

determinant of digestion of solid food, but recommended standardisation of solid food 

particle size with a commercial meat mincer. This model does not take into consideration 

the heterogeneity of chewed food particles that are not reflected with ‘artificial’ mechanical 

steps. 

 

Ideally, structural properties of a food substrate to be digested in vitro should be similar to 

those of a chewed food bolus. During simulated or real oral chewing, physical barriers to 

the release of phytonutrients from plant cells may be ruptured and the degree of cellular 

intactness could be indicative of their potential bioaccessibility. However, oral processing 

can be difficult to simulate and most in vitro studies skip this step or use simplified 

techniques such as pulverising, sieving, chopping or mincing (Woolnough, Monro, 

Brennan, & Bird, 2008), and the occasional inclusion of (salivary) α-amylase for starch 

digestion. As bolus properties strongly influence the subsequent digestion steps, it is 

important to use a bolus with relevant physicochemical and textural properties during in 
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vitro digestion (Guerra et al., 2012). The effect of mastication is highlighted in Fig 2.16, 

where a considerable modification of cellular architectures of various fruit and vegetables 

is apparent. 

 

 
Figure 2.16. Effect of chewing on microstructural changes of fresh apple, rockmelon, carrot 
and steamed beetroot (A, C, E, G). Chewed structures are shown in the second row (B, D, 
F, H). Images are adapted from Hoerudin (2012). 
 

Solid fruit samples of mango and banana flesh have been commonly subjected to milling 

or grinding with hammer mills, blenders, and mortars and pestles (Berardini et al., 2005b; 

Berardini, Knodler, Schieber, & Carle, 2005a; Davey, Keulemans, & Swennen, 2006; 

Davey, Mellidou, & Keulemans, 2009; Gonzalez-Montelongo, Lobo, & Gonzalez, 2010a, 

2010b; Kim et al., 2010; Wilkinson et al., 2011), and to mechanical/instrumental 

homogenisation (Ajila, Bhat, & Rao, 2007; Ajila, Rao, & Rao, 2010; Arora et al., 2008; 

Manthey & Perkins-Veazie, 2009; Mercadante & Rodriguez-Amaya, 1998; Mercadante, 

Rodriguez-Amaya, & Britton, 1997; Ornelas-Paz et al., 2008; Ornelas-Paz, Yahia, & 

Gardea, 2007; Sun et al., 2002), often preceded by air-drying (John, Subbaray, & Cama, 

1970; Pott et al., 2003b; Robles-Sanchez et al., 2011; Robles-Sanchez et al., 2009a) or 

lyophilisation (Barreto et al., 2008; Bennett et al., 2010; Berardini et al., 2005b; Bouayed, 

Hoffmann, & Bohn, 2011; Daud et al., 2010; Davey, Keulemans, & Swennen, 2006; 

Davey, Mellidou, & Keulemans, 2009; Gonzalez-Montelongo, Lobo, & Gonzalez, 2010a, 

2010b; Kim et al., 2010; Shofian et al., 2011; Wilkinson et al., 2011). Wet liquid samples 

such as purees or juices, have been prepared prior to extraction (Manthey & Perkins-

Veazie, 2009) or centrifugation (Alothman, Bhat, & Karim, 2009). In context of the present 

investigation, one of the objectives must be to prepare fresh fruit samples for analysis, in a 

way that the state and condition of these samples are similar to the microstructure 

achieved during consumption with minimal ‘artificial’ processing.  
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The few identification and bioaccessibility studies of mango and banana in the current 

literature are mostly based on extraction of puree (Manthey & Perkins-Veazie, 2009; 

Ornelas-Paz et al., 2008; Ornelas-Paz, Yahia, & Gardea, 2007, 2008) and cubes (2 x 2 

cm) (Robles-Sanchez et al., 2011; Shofian et al., 2011; Sulaiman et al., 2011) except for 

Epriliati, D’Arcy and Gidley (2009a) who investigated the particle size distribution of 

chewed mango. Those results emphasised the importance of the simultaneous punch and 

gentle squash action of teeth. In addition to the breakdown of food particles into smaller 

particle size, human mastication achieves lubrication, softening and dilution with saliva 

(Hoebler, Devaux, Karinthi, Belleville, & Barry, 2000; Prinz & Lucas, 1995) and leads to the 

formation of a cohesive bolus (Lucas et al., 2006) and the melting or hardening caused by 

phase changes (Bourne, 2004). For beverages and juices, the food may be swallowed 

directly because no change to inflow characteristics is needed.  

 

Chewing is a subjective process that varies between individuals, and between food 

matrices and the structural properties of the food bolus. However, characterising food 

products in terms of structural properties may be feasible and will permit a better 

simulation of food material used in in vitro digestion. It is suggested that the current two-

phase in vitro digestion model can be improved by including a ‘real’ chewing phase or a 

phase that more closely mimics actual chewing behaviour and mechanics.  

 

2.3.1.2. Gastric and small intestinal digestion 

Physiological conditions implemented across various static in vitro studies can differ 

considerably. In vitro studies are usually conducted to simulate the fasting state of 

digestion, where the gastric medium is adjusted to pH 2, and the intestinal environment 

ranges from pH 6.5-7.5. While these conditions may be representative of the gastric and 

intestinal fasting state, pH can be influenced by the presence of food. The mean stomach 

pH measured after ingestion of vegetable-rich meals is pH 5.4-6.2, decreasing to pH 1.8-

2.9 by 3 h later; however, the intestinal medium, which is ~pH 5 in the fasting state, 

increased to pH 6.1-6.6 after food intake (Tyssandier et al., 2003).  

 

β-Carotene transfer to the micellar phase was significantly increased under simulated 

conditions of the fed state (47%) compared to fasting conditions (19%) (Wright, 

Pietrangelo, & MacNaughton, 2007). These results show there is a need to carefully 

consider and define experimental parameters used for in vitro assays in the study of both 

carotenoids and polyphenols. While the residence time in the human stomach in vivo 
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varies according to the particle size of food (Guyton & Hall, 1996a), gastric and intestinal 

incubation periods used in different in vitro models are fixed, ranging from 30 min to 2 h. 

Hur, Lim, Decker and McClements (2011) have provided an extensive review of in vitro 

digestion and absorption studies. In vitro models have been adapted to estimate the 

release of carotenoids by quantifying the fraction of phytonutrients transferred from the 

food matrix to a supernatant or micellar phase of the digesta, after mimicking conditions of 

the upper gastrointestinal tract. The fractional release of a phytonutrient from the food 

matrix is referred to as bioaccessibility (Netzel et al., 2011) and represents the potential for 

their absorption or bioavailability.  

 

2.3.1.3. Colonic-microbial fermentation 

Taking into account the current scientific evidence about the numerous beneficial effects 

induced by polyphenol intake despite the low bioavailability of these dietary molecules, 

further studies are required to investigate whether polyphenol colonic-microbial 

metabolites precede the effects of their parent compounds, which are mostly absorbed in 

the small intestine (Etxeberria et al., 2013). After undergoing ring fission in the colon, these 

metabolites (i.e. phenolic acids and hydroxycinnamates) are absorbed and subjected to 

phase ll metabolism in the liver before being excreted in urine in substantial quantities that, 

in most instances, are well in excess of flavonoid metabolites that enter the circulatory 

system via the small intestine (Crozier, Del Rio, & Clifford, 2010). In vitro colonic models 

have been designed to exhibit similar conditions to the human colonic region and consist 

of continuous, semi-continuous, and batch culture systems that maintain colonic or faecal 

microbiota under strictly anaerobic conditions. Studies on the action of gut microbiota on 

polyphenols leading to the production of metabolites with diverse physiological relevance 

have been increasing in recent years (Bolca, Van de Wiele, & Possemiers, 2013). A 

review of various in vitro fermentation studies of polyphenols or polyphenol-rich extracts 

using human and rat faecal slurries, is presented in Table 2.8. When pure phenolic 

compounds are used as substrates, their molecular weight and solubility vary according to 

the degree of conjugation; hence, it is important to measure the amount of substrate on a 

molar rather than mass basis (Aura, 2005). 

 

Models utilising animal faeces are useful for investigating the metabolic processes 

mediated by intestinal microbiota, since they can be given controlled diets to avoid prior 

microbial adaption to certain food substrates, which may bias the gut microbiota 

composition, unlike the challenges faced in dietary control for humans. It must also be
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Table 2.8. Compilation of in vitro colonic fermentation conditions for various polyphenols. 1 

Compounds Faecal slurry Final 
concentration 

Buffer/pH Temp. Time 
intervals 

(h) 

Reference 

Thymol, 
carvacrol, 

eriodictyiol and 
rosmarinic acid 

5% human faecal slurry 500 µM, 
200 µM  

(rosmarinic acid) 

Carbonate-phosphate 
buffer 

37°C 

0, 2, 6, 12, 
24, 48 

(Mosele et al., 2014) 

Polyphenol 
mixture 

9% substrate with 45.5% human 
faecal slurry (20%, w/w) 

- 15% (v/v) Dulbecco’s 
phosphate buffer 
saline (pH 5.5) 

5, 24 (Dall'Asta et al., 
2012) 

Anthocyanin, 
punicalagin and 

ellagic acid 

1 mL polyphenol in 
5 mL human faecal slurry (32%) 

- Phosphate buffer 
(pH 7) 

0, 2, 4, 6, 
24, 48 

(Gonzalez-Barrio, 
Edwards, & Crozier, 

2011) 
Rutin and 
quercetin 

28 µM rutin or 55 µM quercetin in 5 
mL human faecal slurry (32%, w/v) 

- Phosphate buffer  
(pH 7) 

0, 2, 4, 6, 
8, 30, 48 

(Jaganath, Mullen, 
Lean, Edwards, & 

Crozier, 2009) 
Flavan-3-ols 1 µM polyphenol in methanol with 

10 mL human faecal slurry (10 %, 
w/v) 

100 µM Carbonate-phosphate 
buffer with 10 mL 

trace elements  
(pH 5.5) 

0, 1, 2, 4, 
6, 8, 24 

(Bazzocco, Mattila, 
Guyot, Renard, & 

Aura, 2008) 

Cyanidin-3-
glucoside and 

cyanidin-3-
rutinoside 

5 mg polyphenol in 8mL rat caecal 
slurry (25%) 

- Carbonate-phosphate 
buffer (pH 7.2) with 
trace elements and 

resasurin 

0, 1, 2, 4, 
6, 8, 10, 

24 

(Hassimotto, 
Genovese, & Lajolo, 

2008) 

Polyphenol 
mixture 

2 mL rat caecal slurry (100g/L) - Phosphate buffer  
(pH 7.5) 

24 (Saura-Calixto, 
Serrano, & Goni, 

2007) 
Caffeic, 

chlorogenic and 
caftaric acids 

1 µM polyphenol in methanol with 
10 mL human faecal slurry (5%, 

w/v) 

100 µM Carbonate-phosphate 
buffer 

0, 2, 4, 6, 
8, 24 

(Gonthier et al., 
2006) 

Ellagic acid, 
punicalagin, 

daidzein 

1% human faecal slurry (w/v) 10 μg/mL,  
110 μg/mL,  

1 μg/mL  

Brain heart infusion 
medium with cysteine 
and resazurin (pH 7.4) 

5, 24, 48, 
72 

(Cerda, periago, 
Espin, & Tomas-
Barberan, 2005) 

Rutin and 
anthocyanins 

1 µM polyphenol in methanol with 
10 mL human faecal slurry (1 or 

5%, w/v) 

100 µM Carbonate-phosphate 
buffer (pH 5.5) 

0, 2, 4, 6, 
8, 24 

(Aura et al., 2005) 
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noted that animal digestive physiologies differ from humans; for example, rodents are 2 

coprophagic, while pigs are generally more similar to humans, although their upper 3 

digestive tract is more heavily colonised by microbiota and their lower bowel is 4 

proportionally larger in size (Macfarlane & Macfarlane, 2007). 5 

 6 

Colonic microbiota ferment substrates to various end-products such as carbon dioxide 7 

(CO2), ammonia (NH4) and short-chain fatty acids (SCFA). The gas produced as a result 8 

of fermentation is an index of fermentative activity and contains a mixture of gases where 9 

the predominant gas (CO2) is derived both from primary fermentation and the reaction of 10 

acidic fermentation end-products with basic bicarbonate ions (Davies et al., 2000). The 11 

amount of gas produced depends on the amount of fermentable substrate, and the 12 

amount and molar proportions of SCFA produced (Awati, Williams, Bosch, Li, & 13 

Verstegen, 2006; Beuvink & Spoelstra, 1992; Theodorou, Williams, Dhanoa, McAllan, & 14 

France, 1994).  15 

 16 

2.3.2. Review of published in vitro bioaccessibility and fermentation studies of 17 

carotenoids and phenolics in mango and banana 18 

Carotenoid and polyphenol concentrations from chemical extractions of several mango 19 

and banana cultivars have been reported, and are used as a means of estimating 20 

bioaccessibility and bioavailability in human diets. Recommendations are usually based on 21 

nutritional intake or concentrations in the extracts of raw plant material, not taking into 22 

account the changes occurring during gastrointestinal digestion, which could result in an 23 

overestimation. There is little information as to the health effects of consumption of 24 

phytonutrient-rich mango and banana, and presently no bioaccessibility and/or 25 

bioavailability studies have been reported for banana.  26 

 27 

There have been three reported mango studies, but none has involved the major 28 

Australian mango cultivar, Kensington Pride. The first study focused on Indian mango (and 29 

papaya) varietal differences in β-carotene content, and the effect of milk on β-carotene 30 

bioaccessibility (Veda, Platel, & Srinivasan, 2007). Another study examined the impact of 31 

ripening stage and ingestion of dietary fat on β-carotene bioaccessibility in Mexican 32 

Ataulfo mango (Ornelas-Paz et al., 2008). The third study examined processing effects 33 

(dried, fresh and juice) on carotenoid release during various in vitro digestion steps 34 

(Epriliati, D'Arcy, & Gidley, 2009a). 35 

 36 
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The only in vitro study of bacterial fermentation of mango and banana (Vong & Stewart, 37 

2013) looked at the fruit fermentability using freeze-dried residues. The study measured 38 

typical end-products e.g. gas volume, pH and SCFA but did not examine the influence of 39 

different dietary fibre composition or phytonutrient changes on microbial activity. Other 40 

than the above-mentioned studies, information on bioaccessibility and microbial 41 

fermentation of β-carotene, other carotenoids and/or polyphenols through the consumption 42 

of these fruits is lacking. Therefore, the present study is the first attempt to understand in 43 

vitro bioaccessibility and biotransformation of carotenoids and polyphenols from 44 

Kensington Pride mango and Cavendish banana, and the first study to attempt in vivo 45 

validation using an animal (pig) model. 46 

 47 

2.3.3. Digestion and absorption of dietary carotenoids 48 

The liberation of carotenoids from the food matrix is necessary before absorption by 49 

intestinal cells (Faulks & Southon, 2005). Liberation occurs via the mechanical disruption 50 

of food by mastication, ingestion and mixing, and during enzymatic and acid-mediated 51 

hydrolysis of carbohydrates, lipids and proteins. Once released, carotenoids must be 52 

dissolved in oil droplets, which are emulsified with aqueous components of the chyme (de 53 

la Rosa, Alvarez-Parrilla, & Gonzalez-Aguilar, 2010). When these oil droplets are mixed 54 

with bile in the small intestine, their size is reduced, facilitating hydrolysis of lipids by 55 

pancreatic enzymes (Faulks & Southon, 2005; Pasquier et al., 1996). Pancreatic lipase 56 

activity specifically accounts for most of the lipid hydrolysis during digestion (Pafumi et al., 57 

2002). 58 

 59 

Before absorption, carotenoids must be transferred to mixed micelles of lipid digestion 60 

products (mainly fatty acids) and bile salts (Pasquier et al., 1996) for delivery to small 61 

intestinal epithelial cells (Furr & Clark, 1997; Tyssandier, Lyan, & Borel, 2001) (Fig 2.17). 62 

Carotenoids seem to have an absolute requirement for bile salt micelles (Elgorab, 63 

Underwood, & Loerch, 1975; Hollander & Ruble, 1978), different from triglycerides, which 64 

do not necessarily require micelle formation. In the absence of bile and pancreatin, less 65 

than 4% and 8% of β-carotene respectively was transferred to the aqueous phase (Wright, 66 

Pietrangelo, & MacNaughton, 2007). Carotenoids intercalate into bile salt micelles, 67 

causing them to swell and increasing their solubilisation capacity (Porter & Charman, 68 

2001). However, even with increasing pancreatin or bile concentrations, transfer of 69 

carotenoids to the micellar phase reaches a maximum once a certain level of lipolytic 70 

activity is achieved (Wright, Pietrangelo, & MacNaughton, 2007). Bile salt micelles must 71 
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pass through a ca. 40 µm deep unstirred water layer (UWL) on the surface of the intestinal 72 

epithelium, to deliver their contents to the apical portion of the enterocytes across a 73 

concentration gradient (Parker, 1996; Perera & Yen, 2007). Recently, it has been shown 74 

that the absorption of certain carotenoids is not passive as has been believed for a long 75 

time, but is a facilitated process. The cholesterol membrane transporters, scavenger 76 

receptor class B type l (SR-B1) and cluster determinant 36 (Cd36) were found to be 77 

involved in the intestinal uptake of lutein and β-carotene (Moussa et al., 2008; Reboul et 78 

al., 2005; Van Buggenhout et al., 2010). 79 

 80 

                                  
 

Figure 2.17. Carotenoid absorption process, with dietary factors affecting carotenoid 
absorption (in left block arrows). Diagram was modified from de la Rosa, Alvarez-Parrilla 
and Gonzalez-Aguilar (2010). 

 81 

In the enterocyte, provitamin A carotenoids are converted to vitamin A esters. Carotenoids, 82 

vitamin A esters and other lipophilic compounds are packaged into chylomicrons, which 83 

are secreted into the lymph and then into the bloodstream. This mechanism means that 84 

unlike the water-soluble polyphenols that are directly transported to the liver via the portal 85 

vein, lipids and carotenoids enter the general circulation and ‘see’ the extra hepatic 86 

capillary bed first (Faulks & Southon, 2005). Chylomicrons are then attacked by 87 

endothelial lipases in the bloodstream, leading to chylomicron remnants, which are then 88 
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taken up by the liver (Van den Berg et al., 2000). Carotenoids may be stored there or 89 

exported from the liver to various tissues by lipoproteins. Carotenes are predominately 90 

transported in the core of low-density lipoprotein (LDL) and very low-density lipoproteins 91 

(VLDL), while xanthophylls such as lutein, zeaxanthin and β-cryptoxanthin are distributed 92 

approximately equally between high-density lipoproteins (HDL) and LDL in human serum 93 

(Erdman, Bierer, & Gugger, 1993; Furr & Clark, 1997; Johnson & Russell, 1992).  94 

 95 

It is generally accepted that oxidation of carotenoids begins with epoxidation and cleavage 96 

to apocarotenals (e.g. retinal), prior to transformation into other derivatives (Rodriguez & 97 

Rodriguez-Amaya, 2007). The precise mechanism of β-carotene cleavage by β-carotene 98 

15,15’ monooxygenase (EC 1.14.99.36) has been discovered, as has a second enzyme 99 

(β-carotene 9’,10’ dioxygenase), which cleaves the β-carotene molecule asymmetrically 100 

(Bachmann et al., 2002). Wyss et al. (2001) showed that this second enzyme can act on 101 

all carotenoids. Other enzymes capable of catalysing the eccentric cleavage of 102 

carotenoids probably exist, but under physiological conditions, β-carotene 15,15’ 103 

monooxygenase is most active, and mainly effective in the small bowel mucosa and liver 104 

(Perera & Yen, 2007). 105 

 106 

Despite their hydrophobic nature, carotenoids are not very soluble in bulk triglycerides 107 

(e.g. vegetable oil, animal and dairy fat). Solubility of apolar carotenoids in bulk 108 

triglycerides is estimated at between 112 and 141 mg/100g, while the solubility of polar 109 

carotenoids is 22-28 mg/100g (Borel et al., 1996). The amount of lipid normally consumed 110 

in a Western-style meal (20-50 g based on 40% of energy from fat) could potentially 111 

dissolve up to 70 mg of apolar and 44 mg of polar carotenoids. However, the amount of 112 

carotenoid normally ingested in food is only a few mg/kg (Scott, Thurnham, Hart, Bingham, 113 

& Day, 1996). The amount of dietary fat required to ensure carotenoid absorption seems 114 

to be low (~3-5 g per meal) (Jayarajan, Reddy, & Mohanram, 1980), although it also 115 

depends on the physico-chemical characteristics of the ingested carotenoids. However, 116 

lipid intake in excess of about 10 g/meal does not increase carotenoid absorption.  117 

 118 

Additionally, solubility and location of apolar and polar carotenoids can differ, affecting 119 

their micellisation and absorption efficiency. Apolar carotenes are incorporated almost 120 

exclusively in the triacylglycerol (TAG) core, which is highly hydrophobic, whereas polar 121 

xanthophylls are distributed preferentially on the surface (Borel et al., 1996). The 122 

significance of the location in an emulsion is that the surface components can 123 
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spontaneously transfer from lipid droplets to micelles, whereas components associated 124 

within the core require digestion of the TAG before transfer. Micellarisation of carotenoids 125 

can vary by a large extent from 1.7-100% (Ryan, O'Connell, O'Sullivan, Aherne, & O'Brien, 126 

2008), while xanthophyll ester hydrolysis has been found to be incomplete (<40%), 127 

suggesting that cholesterol esterase lacks specificity to hydrolyse different esters 128 

(Granado-Lorencio et al., 2007). 129 

 130 

Several studies have demonstrated that the beneficial effects of carotenoids depend upon 131 

the amount that is actually absorbed or metabolised by the body. Small doses appear to 132 

be more efficiently absorbed than are large doses (Erdman, Bierer, & Gugger, 1993; 133 

Furusho, Kataoka, Yasuhara, Wada, & Masushige, 2000; Tanumihardjo, 2002). The 134 

efficient absorption of a relatively large carotenoid dose (10 mg) in a small amount of lipid 135 

(10 g) would indicate that most, if not all, of the carotenoid that is transferred to the mixed 136 

micelle phase, is absorbed when the micelles dissociate at the enterocytes brush border, 137 

unlike bile salts that are not absorbed in the upper gastrointestinal tract (Faulks & 138 

Southon, 2005), even assuming that enterocyte absorption and transport mechanisms do 139 

not become saturated. 140 

 141 

Carotenoids from fruits appear to be, on average, four times more bioavailable than 142 

carotenoids from vegetables such as carrots and green vegetables, presumably due to 143 

binding to proteins. (de Pee et al., 1998), and involves chemical binding as well as a 144 

physical matrix effect, which together reduces bioaccessibility (Castenmiller & West, 145 

1998). Carotenoids in green vegetables have the lowest rate of duodenal transfer when 146 

compared to carotenoids in non-green vegetables and fruits, which may be related to their 147 

cellular localisation, such as being bound to the thylakoid membranes of chloroplasts 148 

(Granado-Lorencio et al., 2007). β-Carotene from carrots and lycopene from tomatoes are 149 

reported to be poorly bioavailable, because they exist in the form of large crystals, which 150 

may not completely dissolve during their passage through the gastrointestinal tract (de 151 

Pee et al., 1998). Carotenoids from mango and papaya were predicted to be readily 152 

absorbed, as they are dissolved in oil droplets (de la Rosa, Alvarez-Parrilla, & Gonzalez- 153 

Aguilar, 2010). Although bioaccessibility may differ between fruits and vegetables, the total 154 

amount of carotenoids latent in the tissues, and frequency of consumption by individuals 155 

should be taken into consideration. For example, the percentages of bioaccessibility are 156 

similar for mango and papaya (24-39%), but it is interesting to note that papaya has to be 157 

consumed at nearly three times the amount as for mango, to derive the same beneficial 158 
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amount due to lower tissue concentrations in papaya. The bioaccessibility of β-carotene 159 

from boiled African bananas is reported to be 10-32% (Ekesa et al., 2012). 160 

 161 

Fruit ripening changes such as fruit softening and cleavage of cell-wall polymers (e.g. 162 

pectin polysaccharides) could favour bioaccessibility (Ornelas-Paz, Yahia, & Gardea, 163 

2008). This ‘biological processing’ involves a similar effect to thermal or mechanical 164 

processing, resulting in loss of cell integrity. For example, Van het Hof, West, Weststrate 165 

and Hautvast (2000) demonstrated that homogenising and thermal processing of tomatoes 166 

increased the bioavailability of β-carotene and lycopene. Hedren, Diaz and Svanberg 167 

(2012) also reported a 3% increase in β-carotene bioaccessibility after cooking in water for 168 

20min. However, these findings on thermal processing were in contrast to the results of 169 

Tydeman et al. (2010a) who found that β-carotene bioaccessibility is greater for raw carrot 170 

than for cooked carrot. One explanation for this interesting finding is that heating increased 171 

the propensity for intact cell walls to separate, which encapsulated the carotenes, rather 172 

than releasing them (Fig 2.18). This suggests cell rupture is an absolute requirement for 173 

carotene release, since carotenes remaining within intact cell walls are inaccessible during 174 

upper gut digestion. The number of ruptured cells is suggested to be the governing factor 175 

in carotene bioaccessibility, rather than surface area; for example, raw carrot released 176 

more carotene than cooked carrot tissue despite having similar surface area. Tydeman et 177 

al. (2010b) again illustrated the carotenes in intact cells in ileostomists’ effluents collected 178 

after 10 h, remain largely unaffected by digestion. Therefore, the effect of cell rupture, 179 

caused by chewing prior to digestion, on carotene bioaccessibility from fresh fruits needs 180 

further investigation. 181 

 182 

 
Figure 2.18. Sections of carrot after in vitro gastric and duodenal digestion: (A) surface 
cells of raw carrot cube and (B) surface cells of a steamed carrot cube. Carotenes are 
present as orange/red bodies. Adapted from Tydeman et al. (2010a). 
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In vitro digestion findings by Epriliati (2008) showed that carotenoid bioavailability from fruit 184 

consumption alone was relatively low, but β-carotene micellarisation efficiency can be 185 

increased through the consumption of fat-containing foods; for example, the addition of 186 

chicken to mango increased β-carotene micellarisation from moderately and fully ripe 187 

mangoes by 114% and 231% respectively as compared to the digestion of mango alone, 188 

increasing the absorption potential of carotenoids or their cleavage products (Ornelas-Paz 189 

et al., 2008). The addition of milk to mango fruit pulp enhanced β-carotene bioaccessibility 190 

from six mango cultivars (Veda, Platel, & Srinivasan, 2007) due to the presence of fat 191 

and/or protein. The presence of protein in the small intestine aided in the stabilisation of fat 192 

emulsions and enhanced micelle formation (West & Castenmiller, 1998).  193 

 194 

Next, the presence of dietary fibre reduced carotene bioaccessibility (van het Hof, West, 195 

Weststrate, & Hautvast, 2000) by entrapping carotenoids and interacting with bile acids, 196 

resulting in increased excretion (Yeum & Russell, 2002). Dietary fibre components such as 197 

pectin, guar gum, cellulose and wheat bran significantly reduced β-carotene 198 

bioaccessibility by 33-43% (Riedl, Linseisen, Hoffmann, & Wolfram, 1999). It has been 199 

suggested that fibre may exert effects on the activity of pancreatic enzymes (lipase) and 200 

micelle formation (Schneeman, 1990), and also influence the morphology of the renewal of 201 

the cells of the small intestine (Phillips, 1986). The amount, molecular weight and other 202 

physico-chemical properties of pectins have also been shown to affect carotenoid 203 

bioavailability from supplements (Ornelas-Paz et al., 2008). 204 

 205 

The numerous factors and processing steps mentioned above have demonstrated 206 

beneficial or limiting effects on carotenoid bioaccessibility, including: carotenoid speciation, 207 

form and quantity; the food matrix; type and intensity of processing; and the presence of 208 

dietary components such as fat and fibre. Not all of these have been studied in detail, and 209 

there remains more to be explored, particularly related to the underlying properties of fruits 210 

and vegetables that are responsible for their different predicted carotenoid 211 

bioaccessibilities and bioavailabilities. 212 

 213 

2.3.4. Digestion and absorption routes of dietary of flavonoids and phenolic acids 214 

Polyphenol bioaccessibility is affected by differences in cell wall structures and cellular 215 

location of glycosides. There is accumulating evidence for the binding of polyphenols to 216 

food microstructures, including suggestions as to whether the phenolic contents of food 217 

have been underestimated. At the subcellular level, polyphenols accumulate in vacuoles 218 
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or cell walls. Yamaki (1984) found that polyphenols are located mainly in vacuoles, some 219 

in the periplasmic space and none in the cytoplasm. The seeming homogeneity of this 220 

distribution is perhaps confusing, since certain simple flavonoids and ferulic acid esters are 221 

located in the cell wall where they can be covalently linked to cell wall polymers, while 222 

soluble polyphenols are stored in the vacuoles (Antolovich, Prenzler, Robards, & Ryan, 223 

2000). These intact cells are surrounded by a lipid membrane and enclosed by cellulose- 224 

pectin based plant cell walls (Harris & Smith, 2006). The occurrence of polyphenols in a 225 

soluble, suspended or colloidal form and in covalent combination with cell wall 226 

components (Lichtenthaler & Schweiger, 1998) may likely have a significant impact on 227 

their bioaccessibility and hence, bioavailability. 228 

 229 

It is generally accepted that polyphenol bioavailability is rather low in comparison with the 230 

bioavailability of macro- and micronutrients, with values of relative urinary excretion 231 

ranging from 0.3% (anthocyanins) to 38% (gallic acid) (Manach, Williamson, Morand, 232 

Scalbert, & Remesy, 2005) as once ingested, polyphenols are recognised as xenobiotics 233 

(Crozier, Del Rio, & Clifford, 2010). The key issue of polyphenol absorption is their 234 

solubility, which determines their bioaccessibility to the enterocyte. Unlike lipid-soluble 235 

carotenoids that are incorporated into mixed micelles, water-soluble polyphenols require 236 

solubilisation in the aqueous matrix for efficient absorption. Flavonols may be less water- 237 

soluble but they are usually glycosylated, which increases their water solubility (Scholz & 238 

Williamson, 2007). Possible metabolism routes for dietary polyphenols in humans are 239 

shown in Fig 2.19. After absorption, the polyphenols are subjected to Phase l (oxidation, 240 

reduction and hydrolysis) and Phase ll biotransformations (conjugation) in the colonic 241 

enterocytes and then the hepatocytes, resulting in a series of water-soluble conjugates 242 

(methyl, glucuronide and sulfate derivatives) being liberated rapidly into the systemic 243 

circulation for distribution to the other organs and for excretion in urine (Cardona, Andres- 244 

Lacueva, Tulipani, Tinahones, & Queipo-Ortuno, 2013; Vacek, Ulrichova, Klejdus, & 245 

Simanek, 2010). The introduction of methyl ethers decreases the solubility in water; an 246 

additional conjugation with glucuronic acid and/or sulfate are necessary for increasing the 247 

water solubiliy that favors transport and urinary excretion (Tomas-Barberan, personal 248 

communication, March 2015). Enterohepatic circulation may result in some recycling back 249 

into the small intestine through bile excretion (Donovan, Manach, Faulks, & Kroon, 2006). 250 

Plasma analysis provides useful information on the identity and Cmax of circulating 251 

metabolites with maximum concentrations being roughly correlated with urine excretion 252 

(Crozier, Del Rio, & Clifford, 2010). The relatively rapid appearance of polyphenols in 253 
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plasma after oral ingestion is not consistent with colonic absorption, and is suggested to 254 

be due to a substantial uptake from the small intestine (Gee & Johnson, 2001).  255 

 256 

The process of bioavailability of phenolics consists of liberation and digestion in the 257 

stomach and gastrointestinal tract, transport across small intestinal epithelial membrane 258 

into the bloodstream, tissue distribution, metabolism and elimination. During mastication, it 259 

is suggested that flavonoid glycosides may be deglycosylated in the mouth by oral 260 

epithelial cells or microbiota (Hirota et al., 2001; Walle, Browning, Steed, Reed, & Walle, 261 

2005). However, this may be unlikely due to the short residence time (in minutes) solid 262 

food spends in the mouth during chewing and the inability of the oral epithelial cells and/or 263 

microbiota to deglycosylate the glycosides (Ceyman, 2013; Sanz & Luyten, 2006). 264 

Spencer et al. (2000) suggested the degradation of flavonol polymers to monomers during 265 

residence in the stomach at pH 2. However, Rios et al. (2002) demonstrated that this does 266 

not occur in vivo in humans, probably due to the food bolus having a buffering effect, 267 

making the acidic conditions milder than required for proanthocyanidin hydrolysis. In vitro 268 

experiments using single layers of Caco-2 cells as an absorption model in the small 269 

intestine showed that only flavanol dimers and trimers were able to cross the intestinal 270 

epithelial layer (Deprez, Mila, Huneau, Tome, & Scalbert, 2001).  271 

 272 

 273 
Figure 2.19. Routes for dietary polyphenols and their metabolites in humans. Within the 274 

human body, dietary polyphenols and their microbial metabolites successively undergo 275 

intestinal and liver Phase I and II metabolism, biliary secretion, absorption in the systemic 276 

circulation, interaction with organs and excretion in the urine. Adapted from Cardona, 277 

Andres-Lacueva, Tulipani, Tinahones and Queipo-Ortuno (2013). 278 
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Gallic acid, quercetin glucosides, catechins and free hydroxycinnamic acids, which are 279 

absorbed in the stomach and small intestine reached their maximum concentration (Cmax) 280 

at about 1.5 h, whereas naringin, which is absorbed after release of the aglycone by 281 

colonic microbiota, reached Cmax at 5.5 h (Manach et al., 2005). This demonstrates a great 282 

variability in the bioavailability of different phenolic subclasses, and that bioaccessibility is 283 

reduced with increasing molecular weight, or by complexing flavonoid conjugates with 284 

sugars or acylating them with hydroxycinnamic acids. Gallic acid seems to be most readily 285 

absorbed, followed by catechins, flavanones and quercetin glycosides. A characteristic of 286 

quercetin bioavailability is that its metabolites are eliminated quite slowly, with half-lives 287 

ranging from 11-28 h, which could favour accumulation in plasma with repeated intakes 288 

(Manach et al., 2005).  289 

 290 

 291 

Figure 2.20. Absorption pathways of bound phenolic compounds in the human 292 

gastrointestinal tract. (A) Hydrolysis of bound soluble conjugated forms by mucosa cells 293 

cinnamoyl esterases. (B) Soluble conjugated forms transport into enterocytes by SGLT1. 294 

(C) Brush border LPH (-glycosidase) hydrolyse soluble conjugated polyphenols. (D) 295 

Epithelial cells cytosolic -glucosidase hydrolyses glycosides, and aglycones are formed 296 

after absorption. (E) Esterases and xylanase activities of colon microbes (e.g. Clostridium 297 

spp., and Bifidobacterium adolescentis) (Acosta-Estrada, Gutierrez-Uribe, & Serna- 298 

Saldivar, 2014). 299 

 300 

Luminal deglycosylation is catalysed by the action of lactase phloridzine hydrolyase (LPH) 301 

in the membrane-bound brush border (Fig 2.20), after which unconjugated phenolics 302 

diffuse passively through the UWL into enterocytes (Day et al., 2000; Nemeth et al., 2003; 303 

Velderrain-Rodriguez et al., 2014). The LPH enzyme acts outside of the epithelial cells to 304 
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deglycosylate phenolic compounds without first having to traverse the enterocyte 305 

membrane. In epithelial cells, cytosolic β-glucosidase hydrolyses glycosides, and 306 

aglycones are formed after absorption (Aura, 2008). In addition, Selma, Espin and Tomas- 307 

Barberan (2009) reported that some glycosides could be transported through the 308 

epithelium by the active sodium-dependent glucose transporter (SGLT1). The absorption 309 

mechanism of carrier-mediated transport processes, and the possible role of MRP, have 310 

also been postulated (Clifford, 2004; Murota & Terao, 2003). Aglycones permeate faster 311 

than glycosides on the basis of diffusion and do not require membrane transporters and 312 

energy (Tarko, Duda-Chodak, Sroka, Satora, & Michalik, 2009); however, Walle (2004) 313 

proved an active influence of SGLT, MRP1 and MRP2 on the transportation of phenolic 314 

glycosides though the intestinal epithelium.  315 

 316 

2.3.5. Insoluble bound polyphenols 317 

While some polyphenols released from food matrices after mastication are absorbed 318 

through the small intestine epithelium, there are unabsorbed, ‘insoluble’ and entrapped 319 

polyphenols that accumulate in the colon, and together with conjugates excreted into the 320 

intestinal lumen through bile, are metabolised by colonic microbiota before colonic 321 

mucosal absorption and ultimate excretion in the urine (Perez-Vizcaino, Duarte, & Santos- 322 

Buelga, 2012; Russell & Duthie, 2011; Selma, Espin, & Tomas-Barberan, 2009). 323 

Therefore, the colon is an active metabolism site for polyphenols, rather than just a simple 324 

excretion route and thus deserves further attention. In addition to polyphenols and 325 

carotenoids, intact plant cell walls will also effectively encapsulate other cellular 326 

components such as starch, lipid, and protein, as an intact cell wall provides an effective 327 

barrier to the entry of macronutrient-degrading enzymes such as amylase, protease and 328 

lipase, and the mammalian digestive system is not able to break down plant cell walls. 329 

Here again, the nature of the swallowed food is critical. If cell walls are intact on 330 

swallowing, then they are expected to survive to the large intestine where the action of 331 

colonic microbiota could be expected to break down cell wall polymers, thereby releasing 332 

the effectively encapsulated cell contents for possible metabolism by colonic microbiota. 333 

 334 

Human intestinal microbiota has extensive hydrolytic activities and can break down 335 

complex polyphenols into simpler phenolic acids and metabolites, which are then available 336 

to exert their biological activities systemically within the human body (Booth, Murray, 337 

Jones, & Deeds, 1956; Grun et al., 2008; Hertog, Sweetman, Fehily, Elwood, & Kromhout, 338 

1997; Winter, Moore, Dowell, & Bokkenheuser, 1989). Given the diversity of dietary 339 
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polyphenols, their possible microbial metabolites, and the fact that they occur as mixtures 340 

in whole plants or plant extracts, only a small number of polyphenols have been well 341 

studied. Common biological activities recognised for some phenolic metabolites include 342 

antibacterial properties especially against Gram-negative species such as 343 

Enterobacteriaceae, anti-inflammatory activity, anti-AGE formation, stimulation of 344 

xenobiotic degradation enzymes and detoxification processes, and phytoestrogenic 345 

activity (Hervert-Hernandez & Goni, 2011; Tuohy, Conterno, Gasperotti, & Viola, 2012). 346 

 347 

Unabsorbed polyphenols (from the small intestine) and those that are absorbed, circulated 348 

enterohepatically and secreted in the bile, enter the colon (Russell & Duthie, 2011; 349 

Scalbert & Williamson, 2000). There in the colon, the colonic microbiota carries out 350 

hydrolysis, ring-cleavage, reduction, decarboxylation, demethylation, and dehydroxylation 351 

reactions (Rechner et al., 2002; Rechner, Spencer, Kuhnle, Hahn, & Rice-Evans, 2001; 352 

Rice-Evans, 2001; Tapiero, Tew, Ba, & Mathe, 2002; van Duynhoven et al., 2011; Yeh & 353 

Yen, 2006), producing metabolites with different physiological significance. These 354 

metabolites are then absorbed from the colon after deconjugation and transformed by 355 

human cell enzymes into Phase ll conjugates. For example, methyl ether glucuronides and 356 

sulfates are metabolised in the liver, resulting in glucuronidated and sulfated derivatives 357 

(Aura, 2008; Hervert-Hernandez & Goni, 2011; Rossi et al., 2013; Tapiero et al., 2002; 358 

Zhao, Egashira, & Sanada, 2004). Van’t Slot and Humpf (2009) investigated caecal 359 

bacterial deconjugation and degradation of catechins, procyanidin B2 and gallic acid under 360 

anaerobic physiological conditions, and found that these phenolics were almost completely 361 

metabolised within 4-8 h.  362 

 363 

Glucuronidation and methylation occurs mainly in intestinal cells and liver, while sulfation 364 

takes place mainly in the liver and kidney. The primary site of metabolism depends on the 365 

dose ingested; smaller doses are metabolised in intestinal mucosa with the liver playing a 366 

secondary role, while larger doses are metabolised in the liver (Scalbert & Williamson, 367 

2000). Current evidence suggests that there is no long-term storage of polyphenols in the 368 

body (Erdman et al., 2007). However, flavonoids do concentrate in tissues at measurable 369 

concentrations (Henning et al., 2006; Hong, Smith, Ho, August, & Yang, 2001). The 370 

metabolism of phenolics can depend on: dietary fat intake, the form of polyphenol 371 

ingested, dose, gastric and intestinal transit time, fecal degradation rate (Erdman et al., 372 

2007), molecular size of the phenolic compound; degree of phenolic polymerization, type 373 

of sugar attached (Tarko et al., 2009), lipophilicity, solubility and pKa of the phenolic 374 
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compound, intestinal membrane permeability, lumen pH; and first-pass metabolism 375 

(Shahidi & Naczk, 2004). 376 

 377 

Flavonoids that are absorbed in sufficient amounts to exert a possible effect on 378 

cardiovascular parameters in vivo include flavanones, flavonols and flavanols, where they 379 

are predicted to exert biological effects even in conjugated forms (Williamson & Manach, 380 

2005). Mangiferin is reported to undergo phase ll liver metabolism, while its aglycone, 381 

norathyriol is extensively metabolised by colonic microbiota (Liu et al., 2011). A novel, 382 

specific C-glucosyl-cleaving enzyme capable of breaking the C-C linkage of mangiferin to 383 

yield norathyriol (and glucose) is produced from Bacteroides sp. MANG, and appeared to 384 

be different from O-glucosidases (Sanugul et al., 2005a). 385 

 386 

It is worth noting that the doses applied in vivo in animal experiments, or as part of in vitro 387 

studies sometimes exceed the doses that human tissues may be exposed to 388 

physiologically. The concentration range required for an effect in vitro is 0.1-100 µM. 389 

However, according to maximum concentrations found in human plasma after nutritional 390 

intakes (Manach et al., 2005), the effects observed with doses above 2 µM (or <10 µM) 391 

are unlikely to occur in vivo. Additionally, it is important that bioavailability studies should 392 

use metabolites that are actually found in the human body, since absorption is 393 

accompanied by extensive conjugation and metabolism, and the forms appearing in the 394 

blood are usually different from those in food. Manach, Masur and Scalbert (2005) 395 

suggested that unabsorbed polyphenols such as proanthocyanidins should never be 396 

tested in cultured cells or isolated organs since they have no chances of reaching inner 397 

tissues. 398 

 399 

There is growing evidence from human and animal studies that biologically active 400 

polyphenols can have substantial effects on the human gastrointestinal tract microbiota. 401 

These compounds appear to modulate bacterial species composition and profile of 402 

metabolites absorbed from the gut. However to date, only a small number of studies have 403 

focused on the potential biological activities of low-molecular-weight metabolites produced 404 

by the colonic-microbial biotransformation of dietary polyphenols. All polyphenol 405 

metabolism studies using the pig model (Table 2.9) have used purified compounds rather 406 

than complete fruits or vegetables.  407 
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Table 2.9. Compilation of in vivo phenolic digestion and absorption studies carried out in animal (pig) model. 408 

Animal breed, 
age and body 

weight 

Phenolic 
compound(s) 

Phenolic or feed 
daily intake 

Diet 
treatment 

Diet 
composition 

Sample/collection 
intervals 

Metabolites Reference 

26 barrows 
(German 

LandracexLarg
e White) 

(9.9±0.1 kg) 

Quercetin Oral dosage, 10 mg 
quercetin/kg BW/day 

and 50 mg/kg fish 
oil/diet 

ad libitum 
twice daily 

 
Unlimited 

water access 
 

56.3% barley, 
26% soybean 

meal, 9% 
wheat, 5% 

maize starch 
or fish oil, 

3.7% premixes 
and minerals 

Blood samples from 
JV weekly prior to 
feeding and 12 h 

after fasting 
 

Liver, lung, muscle 
and white adipose 
tissues collected 

from neck-shoulder 
area 

Quercetin, 
isorhamnetin, 
tamarixetin 

(Luehring, 
Blank, & 

Wolffram, 
2011) 

3 6-month old 
crossbred 

female pigs 
(112-119 kg), 
no medication 
for 2 weeks 
before study 

Mangiferin, 
isomangiferin
, hesperidin 

Oral dosage, 75 
g/day of 

unfermented C 
genistoides extract 
dissolved in warm 
water, mixed with 

1.5 kg of total daily 
diet and 0.2 g 
ascorbic acid 

 
mangiferin 74±2.5 

mg/kg BW, 
isomangiferin  

74±2.5 mg/kg BW, 
hesperidin 1±0 

mg/kg BW 

11 days, diet 
was given 

every 
morning after 

overnight 
starvation 

before 
adding rest of 

daily diet 
 

Unlimited 
water access 

 

79% barley 
oats, 

15% soy 
groats, 

3% mineral 
diet (Phoskana 

S 80), 
3% soybean 

oil 

Blood samples from 
JV on days 9 and 11 
(5 and 10 h after oral 
administration), 29, 
34, 39, 44 h after 
last extract intake 

and on days 1 and 2 
after termination 
(days 12 and 13) 

 
Urine via bladder 

catheter on days 9 
and 11 (0-11 and 

11-24 h), 24-32, 32-
38, 38-48 h after last 
extract intake (day 
12), and 48-56, 56-
62, 62-72 h (day 13) 

 
Feces excreted on 
days 9 and 11 (0-5, 
5-10, 10-24 h), 24-
29, 29-34, 34-38 h  

Norathyriol, methyl 
mangiferin, 
hesperetin, 
hesperidin, 
eriodictyol 

(Bock, 
Waldmann, 
& Ternes, 

2008) 
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 (day 12) and 48-53, 
53-58, 58-72 h (day 
13) 

  

Feces excreted on 
days 9 and 11 (0-5, 
5-10, 10-24 h), 24-
29, 29-34, 34-38 h 
(day 12) and 48-53, 
53-58, 58-72 h (day 
13) 
 

3-
hydroxyphenylacetic 
acid (HPA), 4-
hydroxybenzoic 
acid, 3,4-
dihydroxybenzoic 
acid (DHBA), 3,4-
dihydroxyphenylacet
ic acid (DHPA), 
2,4,6-
trihydroxybenzoic 
acid (2,4,6-THBA), 
3,4,5-
trihydroxubenzoic 
acid, phloroglucinol 
(PG) 

(Bock & 
Ternes, 
2010) 

3 female pigs 
(94-99 kg) 

Aspalanthin Oral administration, 
157-167 mg 

aspalanthin (~96 g 
rooibos extract 

containing 16.3% 
aspalanthin)/kg 

BW/day or 15.3±1.2 
g aspalanthin per 

animal/day with 500-
800 g habitual diet 

Fed in the 
morning after 

overnight 
starvation 

 
Unlimited 

water access 

70% barley 
groats, 15% 

soy groats, 3% 
mineral diet, 
3% soybean 

oil 

Blood samples from 
JV on days 7 and 10 
(6 and 10h), and on 
day 11 (2, 6, 10 h), 
26, 30 h after last 

ingestion and day 1 
after termination 

 
Urine via bladder 

catheter on days 7 
and 11 and on days 

12 and 13 after 
termination 

Aspalathin, 
methylated 
aspalathin, 
agylcone, 

methylated 
eriodictyol 

 
Excretion of 

aspalathin and 
metabolites finished 
36 h after last feed; 
no detection on day 
13, 36-48 h after last 

ingestion 

(Kreuz, 
Joubert, 

Waldmann, 
& Ternes, 

2008) 
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32 barrows 
(Iberian) 

(100.1±1.9 kg) 

Ellagic acid, 
ellagitannins 

Oral dosage, 4.04 kg 
acorns/day 

Fed for 117 
days 

Only acorns Blood samples from 
JV after deprived for 
food for 24 h before 

killing and 3 h 
postprandial. 

 
Terminal jejunum, 

colon, faeces, urine, 
bile, brain, kidneys, 
liver, Longissimus 

dorsi muscle, 
subcutaneous fat 

(rib) 

Ellagitannins, ellagic 
acid, urolithin D, 

urolithin C, urolithin 
A, urolithin B 

(Espin et 
al., 2007) 

2 castrated 
crossbred 
male pigs 
(122.4 and 
138.9 kg) 

Quercetin Oral dosage, 500 
mg quercetin/kg 

BW/day 

Thrice daily 
for 3 

consecutive 
days 

Wheat, 
defatted 

soybean meal 

Deprived for food for 
8 h before killing 

 
Blood, liver, kidney, 
spleen, brain, heart 

tissues 

Quercetin, 
isorhamnetin, 
tamarixetin 

 
 

(de Boer et 
al., 2005) 

7 castrated 
crossbred 

male pigs (30-
35 kg) 

Quercetin, 
quercetin-3-
O-glucoside 

Oral administration, 
quercetin or 

quercetin-3-O-
glucoside (10 μral ad 
BW) directly mixed 

into meal 
 

Unlimited 
water access 

Barley, wheat, 
defatted 

soybean meal 
(3% fat diet) or 
enriched with 

15 or 30 g 
lard/100g 

(17% and 32% 
fat diet) 

Blood samples 
collected from 0, 4, 

8, 12, 20, 24 h 

Quercetin, 
quercetin-3-O-

glucoside 
 

Peak plasma 
concentration ~70 

min 
 
 

(Lesser, 
Cermak, & 
Wolffram, 

2004) 
 

4 castrated 
crossbred 

male pigs (30-
35 kg) 

Quercetin, 
quercetin-3-
O-glucoside, 

rutin 

Oral dosage, single 
dose of 148 μmol 

quercetin or Q3G or 
rutin/kg BW (=50 
mg/kg) mixed into 
200 g diet, ration 

was moistened with 
water 

 

ad libitum 
twice daily 

 
Unlimited 

water access 

Ground barley, 
wheat, 

defatted 
soybean meal 

Blood samples from 
JV at 0, 4, 8, 12, 20, 

24 h 

Quercetin, 
isorhamnetin, 
tamarixtein 

Bioavailability: Q3G 
> quercetin > rutin 

 
 

(Cermak, 
Landgraf, & 
Wolffram, 

2003) 
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 409 

6 castrated 
crossbred 

male pigs (30-
35 kg) 

Quercetin, 
quercetin-3-
O-glucoside 

 

Oral dosage, single 
dose of 29.6 μral 

quercetin or Q3G/kg 
BW (=10 mg/kg) 

mixed into 200 g diet 
 

   Maximal plasma 
concentration of 

quercetin: 
1.19±0.33 μmol/L 

(120 min), 
isorhamnetin: 

106.7±40.5 mmol/L 
(240 min), 

tamarixetin: 
180.9±57.1 nmol/L 

(210 min) 

 

3 crossbred 
female pigs 
(30-35k g) 

Quercetin 
 

Oral dosage, single 
dose of 29.6 μmol 
quercetin/kg BW 

(=10 mg/kg) mixed 
into 200 g diet, ration 
was moistened with 

water. 29.6 μmol 
Q3G with 15 g grund 

beef 

   Fed twice 
daily 

 
Unlimited 

water access 

38% barley, 
37% wheat, 

20% defatted 
soya bean 

meal, 2% soya 
oil, 
3% 

vitamin/mineral 
premix 

Blood samples from 
jugular catheter over 

72 h 

Quercetin, 
kaempferol, 

isorhamnetin, 
tamarixtein 

 
Bioavailability: 
0.5±0.2% free 

quercetin, 8.6±3.8% 
free and conjugated 
quercetin, 17±1% 
total quercetin and 

metabolites 

(Ader, 
Wessmann, 
& Wolffram, 

2000) 

6 Yorkshire 
male pigs (40-

60 kg) 

Quercetin Oral dosage, 10 
mg/kg cyclosporine 

(Sandimmune® 
diluted with olive oil) 

with and without 
quercetin (50 mg/kg 

dissolved in 
glycofurol) 

Deprived of 
food for 12 h 

before 
dosing and 4 

h after 
dosing 

 
Unlimited 

water access 

(Not reported) Blood samples from 
JV at 1, 2, 3, 4, 5, 6, 

8, 10, 12, 24 h 

Cyclosporin and 
quercetin 

 
Plasma 

concentration: 50-
1600 ng/mL 

(Hsiu et al., 
2002) 
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2.3.6. Non-extractable polyphenols 

Solid residues from aqueous organic extractions or pomaces are generally discarded, 

although an appreciable amount of phenolics may remain in these residues and constitute 

the non-extractable polyphenols (NEPP) (Perez-Jimenez & Torres, 2011). Studies on non-

extractable phenolics are quite scarce, mainly focusing on proanthocyanidins, 

hydrolysable tannins, and some phenolic acids associated with dietary fibres, 

polysaccharides and proteins (Fig 2.21) by covalent bonds (esters and ether), hydrogen 

bonding, and hydrophobic and hydrophilic interactions, or those trapped in the core of food 

matrices that remain in the extract residues (Saura-Calixto, 2014). These NEPP, insoluble 

or bound phenolics form an interesting group from a nutritional point of view as this ‘intact’ 

food fraction may arrive at the colon and upon fermentation, releases the phenolics for 

absorption through the colonic epithelium or biotransformation by microbial enzymes to 

smaller molecular weight phenolics and metabolites (Fig 2.22) (Palafox-Carlos, Ayala-

Zavala, & Gonzalez-Aguilar, 2011). 

 

 
Figure 2.21. Extractable and non-extractable polyphenols in foods (Perez-Jimenez & 
Torres, 2011). 
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Figure 2.22. Bioavailability of phenolic compounds in beverages or foods poor in soluble 
fibre (left) and the interference of dietary fibre in the overall process (right). Adapted from 
Palafox-Carlos, Ayala-Zavala and Gonzalez-Aguilar (2011). 
 

As a result, NEPP are often neglected in bioavailability and metabolism studies. However, 

these complex conjugated fractions do demonstrate antioxidant activity (Chesson et al., 

1999; Perez-Jimenez et al., 2009; Saura-Calixto, Serrano, & Goni, 2007), suggesting 

potential bioaccessibility and bioactivity after exposure to microbial activity in the colon. 

The metabolic fate of NEPP has been explored in an in vitro colonic fermentation model 

(Saura-Calixto et al., 2010) and in rats (Mateos-Martin, Perez-Jimenez, Fuguet, & Torres, 

2012) confirming that NEPP are a source of absorbable and bioactive metabolites. 

Generation of an antioxidant environment in the colon may have important effects on 

gastrointestinal health, including a chemopreventive effect for colorectal cancer (Gao et 

al., 2006).  

 

In order for such health outcomes to be achieved, dietary polyphenols must be released 

during mastication or digestion before absorption can occur. If polyphenols are bound to 

the plant cell wall and/or components, and are not available for small intestinal absorption, 

these complexes may be transported to the colon, where fermentation of fibrous material 

occurs. Evidently, apart from regulating the digestive system, plant fibre is important in the 

controlled release of polyphenols from the gastrointestinal digestive system to the colon. 

Consequently, the release of bound polyphenols from plant cell material during colonic-

microbial fermentation should be further assessed. 



 

 

59 
 

2.4. Extraction, identification and quantification of carotenoids and polyphenols 

The methods for extraction and quantification of carotenoids and polyphenols are 

described in this section. Sample preparation procedures are the first important steps, and 

should be adapted to the nature of the food, the analyte and the analytical method, as well 

as to the distribution of the analyte in the food. Information such as where and when 

(sampling times of the crops during the season, or year) the samples were purchased 

should all be recorded. Extraction and isolation procedures, and solvents are also critical 

factors for subsequent separation, identification and quantification of individual analytes 

from various plant-based materials.  

 

2.4.1. Extraction and isolation procedures 

Solvent extractions are most often the preferred method for the recovery of 

phytochemicals from plant or food products.  In addition, such extractions are used to 

separate analytes of interest from materials that may interfere during quantitative analysis, 

or are used as a ‘clean-up’ step to achieve concentration of food components prior to 

analysis (Nielsen, 2003a).  

 

Plant phenols are ionizable with typical pKa values ranging from 8-10 (Gonzalez & 

Gonzalez, 2010c), and they show considerable diversity in terms of acidity and polarity, 

from slightly hydrophobic to hydrophilic. In addition, the solubility of the different phenolic 

classes is governed by their varying degrees of polymerization (Luthria, 2006). Solvents 

are chosen as a function of the type of flavonoid required, where polarity is an important 

consideration. Since phenolic acids, flavonoid glycosides and anthocyanins are polar in 

nature, they are generally at least partially soluble in water, while the presence of attached 

sugars tends to render the glycosides more water-soluble (Escribano-Bailon & Santos-

Buelga, 2003). Extraction and isolation typically involves the use of water, alcohols 

(methanol or ethanol), acetone, ethyl acetate, or combinations (50-95%) with water under 

different temperatures and extraction times. Less polar flavonoids (flavanones and 

flavonols) are extracted with ethyl acetate or diethyl ether, while flavonoid glycosides, 

higher molecular weight phenolics and their complexes, or more polar aglycones cannot 

be completely extracted with pure organic solvents; hence, alcohol-water mixtures are 

recommended (Stalikas, 2007; Tsao & Deng, 2004). Flavan-3-ols (catechins, 

proanthocyanidins, and condensed tannins) can often be directly extracted with water.  
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The type and form of the carotenoid, and composition of the food matrix are critical to the 

amount of sample preparation necessary prior to sample extraction. Carotenoids do not 

form ester linkages and can be extracted by lipophilic solvents such as hexane, petroleum 

ether, acetone, ethanol, tetrahydrofuran or mixtures of these solvents. When extracting 

carotenoids from foods that contain large amounts of water such as fresh plant or food 

material, a water-miscible organic solvent such as methanol, ethanol, acetone or mixtures 

thereof should be used to achieve better solvent penetration. 

 

Gonzalez-Montelongo, Lobo and Gonzalez (2010a) recently screened variables that could 

affect the extraction efficiency of antioxidants from banana peels, and concluded that 

extracts obtained with methanol had very high antioxidant activity. In addition, Kim and Lee 

(2002), and Tsao and Deng (2004) commented that methanol had a higher extraction 

efficiency than ethanol. Other factors such as temperature also contribute to extraction 

efficiency. For example, high temperatures (between 37C and 90C) enhance the 

diffusion rate and solubility of analytes, although elevated temperatures can cause 

degradation of the phytochemicals and volatilization losses or thermal decomposition 

(Davey, Mellidou, & Keulemans, 2009; Escribano-Bailon & Santos-Buelga, 2003; 

Gonzalez-Montelongo, Lobo, & Gonzalez, 2010b). At higher temperatures, bioactive 

phytochemicals may also react with other components in the plant material, thus impeding 

extraction (Gonzalez & Gonzalez, 2010c). Extraction of carotenoids and polyphenols are 

usually conducted at temperatures ranging from 20-50C.  

 

The recovery of phytochemicals is also influenced by the extraction time and number of 

extraction steps. Extraction times ranging from a few minutes to hours, or even days have 

been used. Longer extraction periods can increase the possibility of the oxidation of 

phenolic acids, unless reducing agents are used. Usually, a single extraction step is used 

but sometimes two to eight steps have been used. Gonzalez-Montelongo, Lobo and 

Gonzalez (2010a) established that to obtain banana peel extracts with a high antioxidant 

capacity, three sequential extractions are required. Another aspect to take into account is 

the sample-to-solvent volume ratio. In addition, the pH of water or solvent in the extraction 

systems determines the solubility of water- or solvent-soluble phytochemicals, and 

influences the possible solubilisation of hydrolysable fractions (Gonzalez-Montelongo, 

Lobo, & Gonzalez, 2010a). The optimum pH of the extraction medium depends on the 

nature of phenolic compounds to be extracted and source of plant material (Ajila et al., 

2011; Gonzalez & Gonzalez, 2010c).  
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Mechanical agitation may be used as part of the extraction steps to maximize the recovery 

of polyphenols. Gonzalez and Gonzalez (2010c) reported that the mass transfer rate and 

chemical solubility of phytochemicals could be improved through the use of agitation 

during the extraction. However, in another study by Davey, Mellidou and Keulemans 

(2009), vigorous shaking with glass beads did not result in significant differences in 

carotenoid recoveries between extracts subjected to homogenization and those without 

homogenization.  

 

Carotenoids and some polyphenols exhibit thermal and photo-sensitivity, resulting in those 

phytochemicals that are isolated in aqueous extracting mixtures undergoing hydrolysis, 

oxidation or trans-cis isomerization. Additionally, disruption of the cells of a plant matrix as 

a consequence of peeling and cutting processes, may trigger endogenous enzymatic 

reactions such as oxidative browning by polyphenol oxidases (PPO). The formation of 

coloured melanins results in browning of the tissue surface and loss of quality (Robles-

Sanchez et al., 2009a). The addition of antioxidants or chelating agents, such as ascorbic 

acid, butylated hydroxyanisole (BHA), butylated hydroxytoulene (BHT), ethylenediamine 

tetracetic acid (EDTA), tert-butylhydroquinone and sulfites can limit oxidation. In addition, 

studies have suggested that laboratory operations should be carried out in dim or yellow 

light, that evaporation be carried out below 40C, and that samples should be purged with 

nitrogen or argon, before being stored in the dark at temperatures of -20C or below. 

 

Solid-phase extraction (SPE) is becoming increasingly popular for clean-up, isolation, 

purification and pre-concentration of different classes of phenolics. SPE fractionation is 

effective in isolating flavonoids and phenolics from mango peel (Schieber, Berardini, & 

Carle, 2003) and flesh (Berardini et al., 2005b; Epriliati, 2008), fruit juice concentrates 

(Cilla, Gonzalez-Sarrias, Tomas-Barberan, Espin, & Barbera, 2009) and red wine (Ginjom, 

D'Arcy, Caffin, & Gidley, 2010). Here, pre-conditioned C18 cartridges are used, where 

sugars and organic acids are eliminated prior to chromatographic analyses.  

 

2.4.2. Spectrophotometric assays 

Most carotenoids exhibit absorption in the visible (vis) region between 400 and 500 nm. As 

carotenoids obey the Beer-Lambert Law (i.e. absorbance is directly proportional to 

concentration), absorbance measurements can be used as an estimation of the total 

carotenoid concentration in food extracts, or in chromatographic fractions where a mixture 

of carotenoids is expected. In addition, spectrophotometry can be used to quantify the 
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concentration of a pure (standard) carotenoid using the absorbance values obtained and 

the extinction coefficient at a specific wavelength (Scott, 2001). 

 

The Folin-Ciocalteu (FC) spectrophotometric assay is most widely used for determination 

of the total phenolic content in plant and food materials. This method is simple, 

reproducible and convenient, and has been widely used for studying phenolic antioxidants. 

The method is an electron transfer based assay and relies on the reduction of the 

phosphomolybdic-phosphotungstic acid reagent to yield a coloured complex in an alkaline 

environment in the presence of phenolic compounds (Ajila et al., 2011). The FC reagent is 

not specific and detects all phenolic groups, including those found in extractable proteins 

(Shahidi & Naczk, 2004). The total phenolic compounds are assayed colorimetrically as 

modified by Singleton and Rossi (1965), and Hoff and Singleton (1977). The content of 

total polyphenols is typically expressed as gallic acid equivalents (GAE).  

 

2.4.3. Chromatographic techniques 

Chromatographic techniques have been used for the separation, preparative isolation, 

purification and identification of carotenoids, flavonoids and phenolic acids. In the past 20 

years, high performance liquid chromatography (HPLC) has been the most frequently used 

analytical technique for separation and quantification of carotenoids and phenolic 

compounds. The possibility of coupling HPLC to several detection devices such as a 

photodiode array (PDA) or mass spectrometric (MS) detector has turned HPLC into an 

even more valuable tool. The introduction of reversed-phase columns has considerably 

enhanced HPLC separation of carotenoids and the different classes of phenolic 

compounds. Gas chromatography (GC) has high sensitivity and selectivity, and has been 

used in studies involving Trimethylsilyl (TMS) derivatives. However, GC is often not 

practical due to the low volatility of many flavonoids and the necessity of preparing 

chemical derivatives.  

 

There are a few published reviews of comprehensive summary of chromatographic 

procedures applied for analyses of carotenoids and various classes of phenolics in banana 

and mango flesh and peel. Isocratic elution is used for simple phenolic separations; 

however, most separations rely on gradient elution owing to the diversity of phenolic 

classes in fruit extracts. Gradient elution systems are usually binary, with one of the 

solvents being an acidified aqueous solution (Solvent A) and the other being a less polar 

organic solvent acidified with the same acid (Solvent B). Flavonoid glycosides are eluted 
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before the aglycones, while the flavonoids that possess more hydroxyl groups are eluted 

before the less substituted analogs. It is interesting to note that separation systems for 

phenolics in foods have been oriented towards the measurement of all (usually several 

sub-classes) of the prominent flavonoids in a single food. 

 

The analysis of carotenoids is complicated due to their diversity and the presence of trans-

cis isomeric forms. The characteristic conjugated double bond system of carotenoids 

causes the most problems associated with analysis of carotenoids due to its particular 

instability towards light, oxygen, heat and acids. For this reason, several precautions are 

necessary when handling carotenoids. The detection of carotenoids and phenolic 

compounds is based on the measurement of radiation absorption in the ultraviolet (UV) 

region for flavonoids and phenolic acids, or the visible spectrum (400-500 nm) for 

carotenoids (Table 2.11). Carotenoids generally have three maxima, or two maxima and a 

shoulder with the middle peak (λmax) having the highest intensity (Oneil & Schwartz, 1992), 

with the main determinant being the number of conjugated double bonds.  

 
Table 2.10 UV-Vis absorption pattern of 
phenolic subclasses. 

 Table 2.11. UV-Vis absorption 
pattern of carotenoids. 

Class of phenolic 
compounds 

λmax (nm)  Carotenoid λmax (nm) 

Hydroxybenzoic acids 270-280  All-trans-β-carotene 450 or 452 
Hydroxycinnamic acids 290-300 (shoulder), 320  All-trans-α-carotene 444 

Anthocyanins 502 or 520  Lutein 445 
Catechins 210 or 280  β-Cryptoxanthin 450 
Flavonols 270, 280 or 360  Neoxanthin 439 

Flavan-3-ols 270-280, 300-330 
(shoulder) 

 Violaxanthin 440 
 Zeaxanthin 450 

Flavanones, flavanonols 280 or 290    
Flavones 240-280, 300-350    

 
Two absorption bands are characteristic of flavonoids. Band ll (240-280 nm) is believed to 

arise from the A-ring and band l (300-550 nm) is attributable to the substitution pattern and 

conjugation of the C-ring (Stalikas, 2007). Various flavonoids and phenolic acids can be 

recognized by their UV-spectral characteristics, including the glycosidic substitution 

pattern, nature of the aromatic acyl group, and the number of hydroxyl groups. There is 

little or no conjugation between the A- and B-rings of flavanones, so their UV spectra 

usually have an intense band  and just a small band l. In addition, this lack of conjugation 

results in small band l peaks for the catechins. Typical wavelengths for analysis and 

quantification of various classes of phenolic compounds are shown in Table 2.10. To 

evaluate the overall complexity in a single chromatographic run, the most commonly used 

wavelength is 280 nm, which represents a suitable compromise.  
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HPLC coupled with MS is widely used for the efficient identification and characterization of 

carotenoids and phenolic compounds extracted from food. MS is one of the most sensitive 

methods of molecular analysis; it has the potential to yield information concerning the 

exact molecular mass and the structure of compounds through their fragmentation 

patterns. Electrospray ionisation (ESI) is one of the most versatile ionisation techniques; it 

is a soft ionisation method that typically generates deprotonated molecules of the 

compounds analysed in the negative ion mode (Ajila et al., 2011). This is useful in 

quantitative analysis or molecular mass determination. Negative ionisation mode is said to 

provide better sensitivity for the identification of many phenolic subclasses (de Rijke et al., 

2006). More recently, ultra performance liquid chromatography (UPLC) has been gaining 

popularity. UPLC is a relatively new technique but has proved more effective than 

standard HPLC for some analyses; for example, it offers greater sensitivity, enhanced 

separation efficiency, shorter run times, and lower solvent consumption. 

 

2.5. Conclusions 

Nutritional recommendations concerning phytonutrients are usually based on phytonutrient 

intake or extracted concentrations of raw plant material, not taking into account the 

changes during gastrointestinal digestion, which could result in overestimation. Moreover, 

studies have shown that phytonutrient bioaccessibility varies, depending on the 

consumption of individual fruits and vegetables or meals, with a tendency to be more 

bioavailable in fruits. However, it is not fully understood why this is so. Could the type of 

plant tissue (soft or hard) play a role as a limiting factor? Even though evidence is 

emerging to demonstrate that the food matrix is a key contributor to the release of 

phytonutrients from plant-based foods, detailed research focusing on the nature of 

interactions between phytonutrients, and how this affects their bioaccessibility and 

bioavailability is lacking.  

 

In vitro bioavailability studies through the application of Caco-2 cells are relatively well 

established for most phytonutrients found in fruits. However, there is a lack of research in 

the area of bioaccessibility and metabolism, especially in the colon. In addition, studies 

usually focus on the degree that phytonutrients are bioaccessible, focusing on 

phytonutrients as a single compounds or a class of related compounds, without directly 

comparing across the different types of phytonutrients, e.g. carotenoids vs phenolic 

compounds. A further area in which there is limited information is the fate of any 

carotenoids or phenolic and other compounds that are not absorbed in the small intestine, 
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and therefore enter the colon, bound to or trapped within plant cell walls. As fruit cell walls 

are likely to be fully fermented in the colon, bound or trapped carotenoids or phenolic 

compounds will be released, and could then either be absorbed through the colon epithelia 

or be metabolised by colonic bacteria, before being absorbed or excreted. In vitro 

fermentation of mango and banana fractions that survive in vitro gastric and small 

intestinal processing can be used to assess potential bacterial metabolism. Information 

gained from in vitro experiments can be tested in vivo through the use of the pig as a 

model for the human digestive tract. An important aspect of in vivo studies that has 

previously been overlooked, is the passage rate, which determines how long food digesta 

is present at different sites within the gastrointestinal tract. This is critical information for 

comparing the results of in vitro bioaccessibility/metabolism studies (where time is a 

variable) to the in vivo conditions where residence time/passage rate is determined by the 

interactions of the food with the animal.  

 

The subsequent chapters of the thesis will describe the work that has been undertaken to 

study the effects of sequential digestive processing in the mouth, stomach, small intestine 

and colon using mango (Kensington Pride) and banana (Cavendish) flesh as a model fruit 

system. Mechanisms restricting the bioaccessibility of carotenoids during in vivo human 

mastication and in vitro gastrointestinal digestion (Chapter 3), and the differential in vitro 

colonic fermentation kinetics of macronutrients (plant cell walls and starch), and phenolic 

compounds (Chapter 4 Part A and B) will be critically examined. As in vitro digestion 

studies are generally carried out in shorter time intervals (~2-4 h), an in vivo pig model was 

carried out to study the ‘real’ digesta passage time through the digestive tract with a 

mango ingredient and pectin (as the main soluble dietary fibre in banana and mango) 

(Chapter 5 Part A and B).  
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Chapter 3. Mastication effects on carotenoid bioaccessibility in vitro from mango 

fruit tissue  

3.1. Introduction 

Epidemiological studies have shown an inverse correlation between consumption of 

carotenoid-rich fruits and vegetables, and the incidence of cancers of the gastrointestinal 

tract (Kant et al., 1992; Kiokias & Gordon, 2004; Mayne, 1996; Rock & Swendseid, 1992), 

cardiovascular diseases (Krinsky, 1998; Murr et al., 2009), diabetes (Yeum & Russell, 

2002), some inflammatory diseases (Perera & Yen, 2007), as well as age-related macular 

degeneration (Snodderly, 1995). The most documented function of β-carotene is its 

provitamin A activity, with consequent health benefits, such as maintenance of epithelial 

function, embryonic development, and immune system function (Diplock, 1991). 

Xanthophylls e.g. zeaxanthin and lutein, are only present in human retinal pigment 

epithelia, in contrast to other body sites where all other carotenoids occur (Bone et al., 

1993), and probably function as blue light filters and singlet oxygen quenchers (Seddon et 

al., 1994). 

 

Human studies are most appropriate to predict nutrient bioavailability, but these studies 

have technical and ethical limitations (Netzel et al., 2011). Metabolic and physiological 

factors have been reported to influence the absorption, distribution and elimination of 

carotenoids (Bowen, Mobarhan, & Smith, 1993; Johnson, Qin, Krinsky, & Russell, 1997; 

Kostic, White, & Olson, 1995), resulting in inter-individual variability in plasma 

concentrations. In addition, host-related factors such as gut health, nutritional status or 

discrepancies, and genotype are typically encountered in most laboratory rodent models 

(Van Buggenhout et al., 2010). However, these factors can be avoided through the use of 

in vitro models. In vitro models are relatively easy to apply to large sample numbers, and 

are suitable for studying the effects of various digestion conditions or other factors linked 

to nutrient bioaccessibility (Fernandez-Garcia et al., 2012). In vitro digestion models can 

be used to simulate the physiological conditions of gastric and intestinal digestion. In 

addition, nutritional recommendations are often based on intakes or concentrations 

present in extracts of raw plant material, not taking into account bioaccessibility and any 

changes during gastrointestinal digestion. This could result in nutrient overestimation, and 

emphasises the importance of estimating bioaccessibility.  

 

Current in vitro digestion procedures have proven useful for the analysis of carotenoid 

release and/or bioaccessibility (Castenmiller & West, 1998; Tydeman et al., 2010a). 
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However, the reliability of the two-phase (stomach and small intestine) in vitro digestion 

model would be expected to be improved by including a ‘real’ chewing phase, or a phase 

that more closely mimics actual chewing behaviour and mechanics, which has been 

excluded in most digestion studies. Mastication is often the first step of food digestion, 

where the process of breaking down solid foods into smaller particle sizes and mixing with 

saliva takes place. During simulated or real oral chewing, the physical barriers to the 

release of nutrients from plant cells may be ruptured. Therefore, the degree of cellular 

intactness could be indicative of their potential bioaccessibility, particularly as cell 

breakage is likely to be a major requirement for carotenoid bioaccessibility (Lemmens, Van 

Buggenhout, Van Loey, & Hendrickx, 2010; Tydeman et al., 2010b). Ideally, the structural 

properties of a food product digested in vitro should be similar to that of a chewed food 

bolus, since mastication varies subjectively between individuals, which impacts on food 

matrices and the structural properties of food boluses. Currently, simulated oral chewing 

has been mimicked using techniques such as pulverising, sieving, chopping or mincing 

(Woolnough et al., 2008), and the occasional inclusion of (salivary) α-amylase for starch 

digestion (Bornhorst, Hivert, & Singh, 2014; Miao et al., 2014). However, such mechanical 

steps do not adequately reflect the heterogeneous nature of chewed food. Epriliati, D’Arcy 

and Gidley (2009a) demonstrated the importance of the simultaneous punch and gentle 

squash action of teeth, while Hoerudin (2012) found that mastication has a considerable 

effect on the cellular architectures of vegetables. In addition, mastication involves 

lubrication, softening and dilution with saliva (Lucas et al., 2006; Prinz & Lucas, 1995), and 

the formation of a cohesive bolus (Barry et al., 1995). 

 

Mangoes are the second most important tropical fruit in terms of production and 

consumption, and have high carotenoid contents, particularly of β-carotene (Chen, Tai, & 

Chen, 2004; Yahia, Soto-Zamora, Brecht, & Gardea, 2007), which is responsible for the 

yellow-orange colour of ripe mango flesh (Pott, Breithaupt, & Carle, 2003). Current 

carotenoid studies have focused on the compositional profile or content (de la Rosa, 

Alvarez-Parrilla, & Gonzalez-Aguilar, 2010; Manthey & Perkins-Veazie, 2009; Mercadante 

& Rodriguez-Amaya, 1998; Robles-Sanchez et al., 2009a), the impacts of ripening stages 

(Ornelas-Paz, Yahia, & Gardea, 2008), the presence of fat (Veda, Platel, & Srinivasan, 

2007), and effects of processing (dried, fresh, juice) (Epriliati, D'Arcy, & Gidley, 2009a). 

However, mastication effects on carotenoid gastrointestinal release from mango fruit have 

not been reported. Comparisons of the carotenoid content before and after in vitro 

digestion can provide information on their stability during gastrointestinal digestion. In vitro 
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digestion models can be adapted to estimate the bioaccessibility of carotenoids by 

quantifying the fractions of phytonutrients transferred from the food matrix into the 

aqueous digesta or micellar phase, which then represents their potential for absorption or 

bioavailability. Studies have shown that the bioaccessibility of carotenoids can be as 

inefficient as 1.7% or as high as 100% (Tydeman et al., 2010a) depending on the type of 

carotenoids, as well as raw versus cooked conditions. The different solubility of polar 

xanthophylls and apolar carotenes can also affect their ability to be incorporated into 

micelles and thus, affect both release and absorption efficiency. 

 

It is hypothesised that the mechanism limiting carotenoid release involves intact cell walls 

(Tydeman et al., 2010a), which prevent the free passage of carotenoids into lipid-soluble 

components or micelles, thus affecting bioaccessibility. The objectives of this study were to 

investigate how the degree of mastication results in varying size distributions of ready to 

swallow bolus particles, and how this affects subsequent simulated gastrointestinal release 

of carotenoids from masticated mango tissue. 

 

3.2. Materials and Methods 

3.2.1. Plant material 

Fully ripe mangoes (cv. Kensington Pride) were purchased from local stores in St. Lucia, 

Brisbane (Australia) two to three days before each of three chewing sessions, in the month 

of November 2012. Mango ripeness was selected based on typical eating maturity at stage 

6 when the peel is yellow with pink-red blush and the flesh is slightly firm, according to the 

Department of Agriculture, Fisheries and Forestry (Queensland Government) mango-

ripening guide (Primary Industries & Fisheries, 2012). Mangoes were stored between 4-

6°C prior to the chewing sessions. 

 

3.2.2. Chewing and bolus collection 

Chewing experiments were approved by the Medical Research Ethics Committee at The 

University of Queensland (Ethical clearance No. 2012000683) (Appendix 1). Twenty 

healthy participants (aged 18-55) were recruited on the basis of frequent mango 

consumption and all gave informed consent to the study for mastication of fresh fruit. From 

the twenty participants, their expectorated boluses were collected, size fractionated and 

each sieve fractions were weighed to obtain a % distribution of particle sizes ranging from 

>5.6 mm to 0.075 mm. This generated an individual mastication profile, allowing the 

participants to be categorised into fine or coarse chewers. For example, the fine chewer 
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has a higher proportion of smaller particle size fractions while the coarse chewer has a 

higher proportion of particle size fractions. This profile was then used for the selection of a 

fine and a coarse chewer, in addition to another criteria: their consistency in producing a 

similar particle size distribution in each chewing experiment. Two participants representing 

a fine and a coarse chewer each were then selected from the twenty participants and re-

invited for three subsequent chewing sessions for bolus collection.  

 

The three independent chewing sessions were carried out on three different days of each 

consecutive week to account for inter-day variation. The chewing sessions were held 

between 0900 and 1100, after the chewers had consumed a light breakfast meal. Five to 

six mangoes (300-600 g each) were cut into cubes and 300 g of cubes were randomly 

selected from the sample pile, and given to each of the fine and coarse chewer. The 

remaining cubes were combined and blended (Rocket blender DJL-1017, CafeTM 

Essentials, China) for 1 min to a puree to determine the carotenoid composition of the 

fresh mango. The chewers were instructed to chew the mango as per their habitual 

chewing behaviour, and to expectorate when they ‘desired’ to swallow. The expectorated 

boluses were collected, washed with 70% ethanol to prevent further biochemical changes, 

and fractionated via a wet sieving method, where water was flushed through a stack of 

sieves of apertures 5.6, 2.8, 1, 0.5 and 0.075 mm (Fig 3.1). The sieved particles were 

drained and collected for in vitro digestion. Chewing, fractionation, in vitro digestion and 

blending processes were carried out in a single day. Particles collected on the 5.6 mm 

sieve were excluded as the largest bolus particle or longest fibre collected on this sieve, 

varied to a great extent in each chewing session. Unlike the subseuqnt sieve size of 2.8 

mm, there was no capped maximum size or length for boluses collected on the 5.6 mm 

sieve, which would have to be physically measured each time and as the boluses have to 

be processed as soon as possible to avoid contamination, oxidation and degradation, it 

was decided not to use the particles collected on the 5.6 mm sieve.  
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Figure 3.1. Images of A(i-iv) fractionated and chewed mango boluses particles of 2.8, 1, 0.5 and 0.075 mm respectively, and B(i-v) 
magnified view of each fraction (collected from the coarse chewer). Larger particle clumps and vascular fibres are observed in 2.8 mm 
B(i) fractions. A finer texture is observed with each decreasing sieve size. 
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3.2.3. In vitro gastrointestinal digestion 

Gastrointestinal conditions were modified from Hoerudin (2012). Gastric digestion (1 h) of 

puree and bolus samples (2 ± 0.05 g) was initiated with 10 mL of emptying gastric 

secretion (130 mM NaCl, 5 mM KCl, 5 mM PIPES), followed by addition of 1 M HCl to 

reduce the pH to 2, and 1 mL porcine pepsin (1:2500 U/mg protein, Sigma-Aldrich, NSW, 

Australia) solution. Subsequently, transition from gastric to small intestinal phase was 

reflected by raising the pH to 6 with 1 M NaHCO3. Small intestinal digestion (1 h) was 

mimicked by adding 5 mL pancreatin (lipase activity ≥8 USP U/mg, protease and amylase 

≥4 USP U/mg, Chem Supply, Adelaide, Australia)-bile (Sigma-Alrich, NSW Australia) 

extract, adjusting the overall pH to 7, and diluting with 5 mL intestinal salt secretion (120 

mM NaCl, 5 mM KCl). To simulate physiological movement, the mixtures were incubated 

in a shaking water bath at 37°C, 55 rpm. Digesta samples were then centrifuged at 3000 g, 

10 min (Centrifuge 5702R, Eppendorf, USA) to separate the bioaccessible fraction from 

residual pellet, flushed with nitrogen and stored at -80°C. 

 

3.2.4. Carotenoid extraction 

Carotenoid extractions of the puree, digesta and residual pellets were carried out the very 

next day after chewing and digestion, as modified from Ornelas-Paz et al., (2008). Puree 

(0.8 g) and digested pellets were vortex mixed with 2.5 mL and 1.5 mL PBS respectively. 

Digesta supernatants were homogenized three times with an Ultra-Turrax® at 4200 rpm 

with 20 mL petroleum ether:acetone (2:1) containing 0.1% BHT, or until the digesta pellets 

turned white. In between each homogenization step, samples were centrifuged at 3000 g 

for 5 min. Organic fractions were collected, combined, evaporated under nitrogen, 

dissolved in methanol:tetrahydrofuran (1:1) with 0.1% BHT and filtered through 0.22 µm 

PTFE membrane. The extracts were flushed with nitrogen and stored at -80°C prior to 

HPLC analysis. Care was taken to evaporate just to dryness, to prevent degradation and 

preferential adhesion of carotenoids to vial walls (Emenhiser, Englert, Sander, Ludwig, & 

Schwartz, 1996). Sample preparation and extraction procedures were performed under 

reduced light, and all glassware and tubes were wrapped in aluminum foil to avoid contact 

with light. Extracts were analysed within three days of extraction, or after one freeze-thaw-

cycle (frozen storage at -20 oC). 

 

3.2.5. HPLC-PDA analysis 

Separation and quantification of carotenoids were carried out on a Waters AcquityTM 

UPLC-PDA system using an existing method developed by the Analytical Services unit, 
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School of Agriculture and Food Sciences, The University of Queensland (Waanders, 

personal communication, March 2012). Isocratic elution was performed at 2 mL/min on a 

Hypersil® OBS C18 (250 x 4.6 mm, 5 µm i.d.) RP column (ThermoQuest) using a mobile 

phase of methanol:tetrahydrofuran:water (67:27:6). The column temperature was 

maintained at 25C. An injection volume of 5 µL was used, and UV-Vis spectra of column 

eluent were recorded from 210-498 nm. β-carotene was identified by comparing the 

retention time and UV-Vis absorption spectrum with all-trans-β-carotene reference 

standard (>98% purity, Sigma-Aldrich, NSW, Australia) and xanthophylls were tentatively 

identified by comparing to those of published literature. Xanthophylls concentrations were 

calculated as β-carotene equivalents. β-Carotene calibration curve for quantification was 

constructed by plotting peak area against concentration (µg) (r2=0.999). β-Carotene 

working standards (0.2, 0.5, 1, 5, 10, 25, 50 µg/mL) were prepared fresh on a daily basis 

from a β-carotene stock (50 µg/mL) in methanol:tetrahydofuran (1:1) with 0.1% BHT, and 

injected daily. β-Carotene standard concentration was calculated at 453 nm 

spectrophotometric absorbance at 453 nm and a molar absorption coefficient of 2592. β-

Carotene stock solution was found to be stable for two months at -20°C (<5% loss).  

 

3.2.6. Moisture analysis 

Moisture contents of the pureed mango and chewed particles (2-5 g) were determined by 

vacuum oven drying (65°C for 24 h). 

 

3.2.7. Confocal laser scanning microscopy (CLSM) 

Autofluorescence of carotenoids was detected using CLSM (LSM700, Carl Zeiss, 

Germany), differential interference contrast (DIC) and Zen (Black) 2011 software. 

Observations of carotenoid chromoplasts were carried out under 10x, 20x and 63x 

objective lens, at an excitation  of 488 nm, emission  above 488 nm, and laser power 

intensity of 2%. Fluorescence of cell walls was observed at excitation  of 355 nm and 

emission  from 400-440 nm, after staining with Calcofluor. 

 

3.2.8. Statistical analysis 

Significant differences between mean values of carotenoid quantification were tested using 

one-way ANOVA, while differences between chewers and particle sizes were determined 

using Tukey’s HSD multiple rank test (P<0.05) (Minitab v.16, USA). 
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3.3. Results and Discussion 

3.3.1. Carotenoid composition and content 

A typical HPLC carotenoid profile of Kensington Pride (KP) mango contains twelve peaks 

(Fig 3.2). Peaks 1-4, 6, 8-10, and 5, 7, 11 were tentatively identified as all-trans-

violaxanthin and 9-cis-violaxanthin, and/or their derivatives respectively. The absorption 

spectra of all-trans-violaxanthin (λmax 416, 441, 472 nm) and 9-cis-violaxanthin (λmax 413, 

436, 465 nm) are similar to those reported by Ornelas-Paz, Failia, Yahia and Gardea 

(2008). The 9-cis-violaxanthin isomer was distinguished from the all-trans isomer based on 

a characteristic 3nm hypochromic shift (Ornelas-Paz, Yahia, & Gardea, 2007). The 

identification of trans and cis-violaxanthins is based on comparison to published 

absorption spectra, and has not been characterized as free xanthophylls or xanthophyll 

esters so in this study, they are collectively termed as xanthophylls. Peak 12 was identified 

as β-carotene by comparing elution time and spectral maximum (λmax 453, 481 nm) to an 

authentic standard (λmax 453, 481 nm). 

 

 
Figure 3.2. Representative HPLC-PDA chromatogram of ripe KP mango extract at 453 nm. 
Peaks 1-4, 6, 8-10 were assigned to all-trans-violaxanthin (and derivatives), and peaks 5, 
7, 11 were assigned to 9-cis-violaxanthin (and derivatives). Peak 12 was identified as all-
trans-β-carotene. 
 

KP mango carotenoid composition is reported for the first time, and is comprised 

principally of all-trans-β-carotene (54%), followed by all-trans-violaxanthin (34%) and some 

9-cis-violaxanthin (12%). Similar compositions have been recorded for Tommy Atkins, 

Manila, Ataulfo, Haden and Taiwanese cultivars (Chen, Tai, & Chen, 2004; Manthey & 

Perkins-Veazie, 2009; Ornelas-Paz, Yahia, & Gardea, 2007), with β-carotene being the 

predominant carotenoid in mangoes, although β-carotene as a percentage of total 

carotenoids can vary from 48 to 84% (Godoy & Rodriguez-Amaya, 1989) depending on 
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the cultivar or fruit physiological maturity stage. The β-carotene content in KP mango 

(1282-2081 µg/100g FW) is higher than in most other cultivars (de la Rosa, Alvarez-

Parrilla, & Gonzalez-Aguilar, 2010), where it ranges from 191-1340 µg/100g, with the 

exception of Ataulfo cultivars.  

 

In contrast, all-trans-violaxanthin (930-1150 µg/100g FW) and 9-cis-violaxanthin (318-425 

µg/100g FW) was present in lower concentrations to those reported for other cultivars 

(Mercadante & Rodriguez-Amaya, 1998; Mercadante, Rodriguez-Amaya, & Britton, 1997; 

Ornelas-Paz et al., 2008). β-Carotene shows ~40% variability between individual 

mangoes, reflecting fruit to fruit variation (Hewavitharana, Tan, Shimada, Shaw, & 

Flanagan, 2013a), which is large even for fruits from the same source. Keitt mangoes 

grown in different regions of Brazil also had a two-fold difference in β-carotene content 

(Mercadante & Rodriguez-Amaya, 1998), indicating that environmental effects may have a 

similar influence on carotenoid content as cultivar-related differences. 

 

3.3.2. Mastication, blending, particle size and carotenoid locations  

Carotenoids are observed within globules in the cells of mango flesh (Fig 3.3A), supporting 

similar observations from other chromoplast morphology studies (Rock & Swendseid, 

1992; Schweiggert, Mezger, Schimpf, Steingass, & Carle, 2012; Vasquez-Caicedo et al., 

2006). During blending to a puree, the high shear rate breaks up both cell walls and 

globules to an almost homogenous mixture (Fig 3.3B). The puree consists of 5-10 µm cell 

components, with some containing carotenoids as evidenced by their color (Fig 3.3B(i)) 

and autofluorescence (Fig 3.3B(ii)); however, most structural cell walls are no longer 

present. Mastication confers actions that are not replicable with a cutting blade such as 

compression, compaction, squashing, and lubrication of food material with saliva to form a 

cohesive bolus. While these actions collectively encapsulate carotenoids, teeth cutting or 

slicing can be considered a prerequisite for releasing cell contents, where the physical 

barriers of plant cell walls are ruptured. In larger chewed fractions (captured on 5.6 and 2.8 

mm sieves), clusters of intact and stacked cells encapsulating carotenoids are held tightly 

together by vascular fibre strands (Fig 3.4A-B). The 1 mm tissue fraction comprises single 

cells and cell fragments, while a reduction in cell size is observed (Fig 3.4C). In the 0.075 

mm fraction, the cells are more sparsely dispersed with empty pockets of ruptured cells 

(Fig 3.4D); additionally, ‘free’ carotenoids were detected, indicating release from the 

broken mango cells (Fig 3.4D(ii)).  
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Hutchings and Lillford (1986) proposed that boluses should reach a degree of structure 

and lubrication before swallowing, and so information on the bolus water content before 

and after chewing could give a measure of saliva incorporated into the masticated matrix. 

The moisture content of masticated fractions (96 ± 1%, 98 ± 0.2%, 99 ± 0.3% in 2.8, 1, and 

0.075 mm fractions respectively) was always higher than in fresh mango (84 ± 1%), 

showing a considerable portion of saliva is retained by the boluses during chewing. 

 

 
Figure 3.3. Differential interference contrast images of mango flesh A(i) and puree B(i); 
A(ii) and B(i) showing autofluorescence of carotenoids (orange globules). Arrows in A(i) 
represent carotenoid-containing chromoplasts, and ‘CW’ represents cell walls.  
 

3.3.3. Release of carotenoids from solid particles is dominated by small intestinal 

digestion 

Most in vitro digestion studies ignore oral mastication or replace it with mechanical 

processing, and only a few studies have investigated the effects of mastication on nutrient 

bioaccessibility (Bornhorst, Hivert, & Singh, 2014; Epriliati, D'Arcy, & Gidley, 2009a; 

Hoerudin, 2012; Ranawana, Monro, Mishra, & Henry, 2010). Thus, carotenoid release 

from solid chewed fractions as a starting material was of particular interest in this study. 

Relating the release of carotenoids in the fresh mango tissue to that of the expectorated 

boluses posed an initial challenge due to the constant production and dilution of saliva 

during chewing. Therefore, the bioaccessibility of each particle size fraction was 

determined as the bioaccessible fraction in the supernatant relative to the sum of 

combined contents in the digesta supernatant and bolus pellet following digestion, rather 
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than to the absolute content of fresh mango. As such, the fraction of carotenoids readily 

lost to the aqueous environment, i.e. the liquid phase in the mouth during chewing and 

washing during the wet sieving process, is not taken into account, in contrast to the puree, 

which still contains the liquid phase. 

 
After simulated gastric digestion (1 h), mango cells and vascular fibres were still intact (Fig 

3.5A, 3.5C), and apparently encapsulating the carotenoids, indicating that acidic hydrolysis 

did not have a major role in breaking down the cell walls or releasing the carotenoids. This 

is consistent with a relatively low level of release from chewed bolus particles under these 

conditions (Fig 3.6). In contrast, the effect of the emulsifying activity of bile salts on 

carotenoid aggregation was evident after subsequent small intestinal digestion in vitro. 

Cellular-trapped and ‘free’ carotenoids are shown as assorted clusters of globular 

aggregates (Fig 3.5B, 3.5D), which are consistent with a significant increase in release of 

β-carotene from 8% to 33% (Fig 3.6A), and xanthophylls from 20% to 57% (Fig 3.6B) in 

the chewed solid fractions following in vitro small intestinal digestion. This illustrates the 

critical importance of bile salts for carotenoid release into aqueous digesta. Being 

lipophilic, carotenoid dissolution in micelles is essential, unlike water-soluble polyphenols 

that are readily dissolved in aqueous digesta. Other studies of carotenoid release, notably 

from tomato, have shown that the presence of triglyceride oils increases bioaccessibility 

(Colle, Van Buggenhout, Lemmens, Van Loey, & Hendrickx, 2012; Huo, Ferruzzi, 

Schwartz, & Failla, 2007), presumably by facilitating the transfer of carotenoids to the 

emulsion phase. However, unlike tomatoes, mango fruit is not typically consumed with oil 

so this was not investigated in the current study. 

 

The release of β-carotene from mango puree (67%) following small intestinal digestion is 

substantially greater than from chewed particles (<33%), and likewise for xanthophylls 

(puree: 75% and chewed particles: <57%). Hedren, Diaz and Svanberg (2002) confirmed 

that mechanical homogenization leading to carrot cell rupture, increased β-carotene 

release from 3% to 21% with an expansion of surface area. In addition, Reboul et al. 

(2006) reported that for carrots, juicing increased bioaccessibility levels from 3% to 14%.  

However, the absolute values of released carotenoids cannot be directly compared 

between puree and chewed particle forms as the latter is expected to have lost readily 

released carotenoids during the chewing and sieving/washing stages. Due to the relatively 

low % release following in vitro gastric treatment, particularly for β-carotene, it is proposed 

that the difference in carotenoid release between puree and chewed particles, after in vitro 



 

 

77 
 

  
 

 

Figure 3.4. Effect of in vivo chewing on mango cellular microstructure for particles captured on sieves of screen size: (A) 5.6 mm, (B) 2.8 
mm, (C), 1 mm, and (D) 0.075 mm. A(i)-D(i) differential interference contrast images showing carotenoids (orange) located within residual 
cellular structures; A(ii)-D(ii) the same fields of view showing fluorescence of carotenoids (orange globules) and cell walls (purple-blue). 
Arrows in A(ii) show connective vascular fibres and in D(ii) shows released carotenoids.  
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Figure 3.5. Effect of in vitro digestion on two sieve size fractions of chewed mango following in vitro gastric digestion: (A) 5.6 mm, (C) 
0.075 mm, and following small intestinal digestion: (B) 5.6 mm, (D) 0.075 mm; A(i)-D(i) differential interference contrast; A(ii)-D(ii) 
fluorescence of carotenoids (orange globules) and cell walls (purple-blue).  
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gastric digestion, provides an estimate of the fraction of carotenoids lost during the oral 1 

processing and isolation of solid chewed particles, as indicated in Fig 3.6A. 2 

 3 

A greater relative % release is observed for the xanthophylls in comparison to β-carotene, 4 

presumably due to xanthophylls being less hydrophobic. Transfer efficiency seems to be 5 

influenced by solubility as reflected in the micellarised localisation of different carotenoid 6 

types. Carotenes are embedded in the triacylglycerol-rich core of micelles, while 7 

xanthophylls with more hydroxyl or other functional groups are more polar (Matsuno et al., 8 

1986; Tyssandier et al., 2003), and are expected to reside closer to the surface monolayer, 9 

together with proteins, phospholipids, and partially ionised fatty acids (Canene-Adams & 10 

Erdman, 2009). This suggests that xanthophylls are more readily incorporated into lipid- 11 

bile micelles (Garrett, Failla, & Sarama, 1999; Van Buggenhout et al., 2010), although this 12 

may vary amongst green vegetables containing membrane or protein-bound chloroplasts 13 

(Failla, Huo, & Thakkar, 2008). 14 

 15 

 16 
Figure 3.6. Percentage release of (A) β-carotene and (B) sum of total xanthophylls and 17 

derivatives, from masticated mango fractions and puree following simulated gastric (1 h) 18 

and small intestinal (2 h) digestion, into the aqueous digesta phase. Solid particles 19 

captured on three sieves (2.8, 1, 0.075 mm) from a fine (F) and a coarse (C) chewer were 20 

studied. For clarity, error bars are only shown for puree and 0.075 mm samples from the 21 

fine chewer. 22 

 23 

Further to this, there is a fraction of carotenoids that is not released following small 24 

intestinal digestion (Fig 3.6). There is still a limited extent of bioaccessibility from the solid 25 

chewed particles (20-30% for β-carotene and 40-50% for xanthophylls) or incomplete 26 

bioaccessibility after pureeing (65-75%). We propose that the incomplete bioaccessibility 27 
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of purees is due to the crystallinity of mango carotenoids or residual chromoplast structure, 1 

since there is no evidence for the presence of intact cell wall material. For the chewed 2 

particles, additional restrictions on bioaccessibility are proposed to arise from residual 3 

embedding in cell wall residues (Fig 3.5D). Pectin from fruit matrices has been suggested 4 

to interfere with micelle formation by partitioning bile salts and fat in the pectin gel phase 5 

(Palafox-Carlos, Ayala-Zavala, & Gonzalez-Aguilar, 2011; Parada & Aguilera, 2007; Rock 6 

& Swendseid, 1992) that is necessary for the absorption of lipophilic carotenoids. 7 

 8 

3.3.4. Higher carotenoid concentration in particles from coarse chewing and in 9 

larger particle size fractions 10 

Mango pieces chewed to the same particle sizes (of 2.8, 1, 0.075 mm) from the fine and 11 

coarse chewers were examined to show variability in chewing behaviour. The carotenoid 12 

bioacessibility from the mango tissue of the same particle size produced from the fine and 13 

coarse chewers was similar (Fig 3.6). However, larger absolute concentrations of β- 14 

carotene and xanthophylls were found in equivalent sieve fractions from a coarse chewer 15 

compared with a fine chewer (P<0.05) (Table 3.1) for both the bioaccessible carotenoids 16 

and those trapped in the residual plant material following in vitro small intestinal digestion. 17 

This relatively large difference (coarse chewed particles typically have about 30% higher 18 

carotenoid concentration than fine chewed particles - Table 3.1) suggests that fine 19 

chewing causes more carotenoids to be released into the solution phase, which in this 20 

experiment either remained in the mouth or were removed during sieve capture of 21 

particles. In contrast, the percentage release of either β-carotene or xanthophylls from all 22 

particle sizes was very similar for both coarse and fine chewers (Fig 3.6), apart from 23 

xanthophylls from the smallest fraction. This illustrates, in this trial, the type of inter- 24 

individual habitual chewing (coarse or fine) as influenced by the number of chews, 25 

preferential use of tongue to molars or a longer chewing period, have a larger impact than 26 

the chewed particle size in determining the total release of carotenoids from mango fruit.  27 

 28 

In addition, total carotenoids were present in higher concentrations in larger particles, 29 

which suggest a distribution effect due to a greater mass of plant cell walls, cell clusters 30 

and insoluble fibre network in larger particles that entraps more carotenoids. The highest 31 

concentration per 100 g (fresh weight) was found in the 2.8 mm fraction, consisting of 32 

bulky cell clusters, followed by the 1 mm fraction containing single cells and some cell 33 

fragments, while the lowest concentration was found in the 0.075 mm fraction, which 34 

consists mostly of fragmented cells. 35 
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Table 3.1. Carotenoid concentrations (µg/100g fresh weight) in each mango particle size 1 

fraction following gastrointestinal digestion in vitro (2 h) 2 
Chewed 
mango 

fractions 

Bioaccessible fraction Trapped in plant matrix 

Gastric 
digestion 

Small 
intestinal 
digestion 

β-carotene/ 
xanthophylls1 

Small 
intestinal 
digestion 

β-carotene / 
xanthophylls 

Coarse 
2.8 mm 

 
1 mm 

 
0.075 mm 

 
Fine 

2.8 mm 
 

1 mm 
 

0.075 mm 

 
48 ± 27a 

 
47 ± 12a 

 
50 ± 23a 

 
 

44 ± 13a 

 

24 ± 19a 

 

34 ± 17a 

 
320 ± 96a 

 

249 ± 28ab 

 

199 ± 42ab 
 
 

211 ± 14ab 

 

192 ± 18b 

 

136 ± 18b 

 
211 ± 90a/127 ± 9x 

 
154 ± 13ab/115 ± 16xy 

 

152 ± 42ab/93 ± 20yz 

 

 

131 ± 14ab/99 ± 5xyz 
 

118  ± 22ab/93 ± 3yz 
 

87 ± 20b/68 ± 4z 

 
788 ± 220a 

 

561 ± 171abc 

 

397 ± 81bc 
 
 

610 ± 108ab 

 

506 ± 66abc 

 

216 ± 20c 

 
649 ± 198a/159 ± 28x 

 
447 ± 139abc/132 ± 35xy 

 
326 ± 58bc/ 90 ± 24yz 

 
 

499 ± 79ab/129 ± 29xy 
 

404 ± 67abc/121 ± 2xy 
 

179 ± 15bc/56 ± 10z 

Data is expressed as means±standard error of three independent chewing and digestion experiments. 3 
Values with different letters in each column denote a significant difference (P<0.05) in carotenoid 4 
concentration. 1Xanthophylls consist of violaxanthins and derivatives. 5 

 6 

The smallest particle size (75 µm) fraction resembles a ‘mash’ (Fig 1C(v)), for which the 7 

increased surface area explains the higher % release in the smaller particles (Fig 3.6), in 8 

agreement with Lemmens et al. (2010) and Hedren et al. (2002), who reported that smaller 9 

particles had a higher release or digestibility. Netzel et al. (2011) also showed that 10 

disruption of the cell wall matrix led to improved release rates, with bioaccessibility of 11 

carotenoids in single carrot cells (70-80 µm) increasing two-fold compared to 230 µm cell 12 

clusters. There is a general trend for smaller particles to be associated with a greater % 13 

release of carotenoids, but the differences between particle sizes or fine vs coarse 14 

chewing (Fig 3.6) are unexpectedly small. Whilst there is indeed a (small) particle size 15 

effect on bioaccessibility, this may be secondary to the extent of chewing for soft tissues 16 

such as mango, which contrasts with carrot tissues where a single cell wall appears to be 17 

enough to retain carotenoids (Tydeman et al., 2010a). This contrast with carrots is likely to 18 

be a consequence of the robustness of the cell wall matrix. In carrots and many other 19 

vegetables, cell walls are relatively robust and can survive cooking processes. In ripe 20 

mango and possibly other ripe fruits, chewing and in vitro digestion results in a gel-like 21 

solid structure (Fig 3.5) without a discrete wall. Therefore, phytonutrient bioaccessibility 22 

may vary amongst fruits, vegetables, grains and legumes due to differences in cell wall 23 

thickness and structure, which determine how intact cellular structures remain after 24 

chewing and digestion. 25 

 26 
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3.4. Concluding Remarks 1 

This study of mastication effects on carotenoid release emphasises the importance of 2 

including chewing in in vitro digestion studies. Mastication confers a combination of size 3 

reduction and compaction processes as part of the digestive process, with plant cell wall 4 

structures being one of the limiting factors for carotenoid release, and chromoplast location 5 

of carotenoids being another. Some carotenoids (25-33%) may be present as crystallites 6 

or may remain trapped in the residual plant matrix, and could potentially be fermented in 7 

the large intestine, releasing more carotenoids during degradation of cell walls there. This 8 

warrants further investigation of carotenoid release following colonic fermentation of in 9 

vitro digestion residues. Factors influencing individual chewing behaviour or habit could 10 

also be investigated in future work. Particle size and the type of chewing resulted in 11 

differences in the relative amounts of carotenoids in the solid fraction after chewing, but 12 

had a surprisingly small impact on carotenoid bioaccessibility from the solid particles, 13 

suggesting that cell wall factors are not necessarily the most important in determining 14 

carotenoid bioaccessibility in soft tissues in contrast to tissues with more robust cell walls 15 

such as carrot.  16 
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Chapter 4. Fermentation kinetics and microbial biotransformation of polyphenols 

during colonic fermentation of masticated mango and banana in vitro 

4.1. Introduction  

In vivo Investigations of dietary polysaccharide fermentation in the human colon can be 

challenging due to inaccessibility, inconsistency, and the limitations of dietary control for 

human volunteers (Edwards et al., 1996). There is continued interest in the development 

of relevant in vitro models for the digestive process, but uncertainty over how best to 

represent the unit processes involved. As an adjunct to in vivo studies, non-invasive in 

vitro colonic fermentation models can be used to monitor changes in substrate 

fermentability before and after digestion, and to elucidate the potential role of microbiota in 

the metabolism of partially and/or non-digestible components of the diet e.g. dietary fibre. 

In vitro colonic models involving rats or pig caecal microbiota (Shahidi & Naczk, 2004) 

have proved useful for investigating the metabolic processes mediated by intestinal 

microbiota, since pigs can be fed controlled diets, and there is direct access to the 

intestinal contents. Even so, it is important to remember that animal digestive physiologies 

do differ from humans e.g., rodents are coprophagic, while pigs are generally more similar 

to humans in terms of digestive anatomy and physiology (Labib, Erb, Kraus, Wickert, & 

Richling, 2004), although their upper digestive tract is more heavily colonised by bacteria 

(Macfarlane & Macfarlane, 2007). For comparative purposes, it is important that the 

microbiota used as an inoculum is from a well-defined source. 

 

Amongst a range of fermentable substrates, fruit and vegetable samples have been 

examined in vitro using colonic fermentation techniques (Bazzocco et al., 2008; Day, 

Gomez, Oiseth, Gidley, & Williams, 2012; Molan, Lila, Mawson, & De, 2009; Piquer et al., 

2009; Vong & Stewart, 2013). Previous authors have used a variety of pre-treatments on 

fruits and vegetables in in vitro digestion studies preceding fermentation step such as 

milling or grinding with hammer mills, blenders, and mortars and pestles (Davey, 

Keulemans, & Swennen, 2006; Kim et al., 2010; Kim, Brecht, & Talcott, 2007), and 

homogenisation (Ajila, Rao, & Rao, 2010; Manthey & Perkins-Veazie, 2009; Mercadante, 

Rodriguez-Amaya, & Britton, 1997; Ornelas-Paz, Yahia, & Gardea, 2007), often preceded 

by air-drying (Robles-Sanchez et al., 2011) or lyophilisation (Bouayed, Hoffmann, & Bohn, 

2011; Shofian et al., 2011). In addition, wet liquid samples such as purees or juices have 

been prepared (Alothman, Bhat, & Karim, 2009; Manthey & Perkins-Veazie, 2009). 

However, these high-shear techniques result in the disintegration and collapse of cellular 

structures, which does not necessarily simulate the human mastication process, 
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consequently leading to significant overestimates in phytonutrient bioaccessibility. For 

example, in Chapter 3, the carotenoid bioaccessibility of pureed mango was significantly 

higher and twice that of in vivo masticated mango fractions of varying particle sizes. In 

addition, findings from Chapter 3 also showed that there is still a fraction of carotenoids not 

completely released from the puree or chewed particles after small intestinal digestion in 

vitro, which is therefore hypothesised to be transported to the colon. 

 

The aims of this study were to investigate the fermentation kinetics and end-products of 

fresh mango and banana flesh (Chapter 4 Part A), with an additional focus on the release 

and metabolism of their polyphenols (Chapter 4 Part B) using a standardised batch 

fermentation model after in vivo human mastication and in vitro digestion processing. In 

this context, the fruits were prepared in such a way such the state and condition of these 

samples are comparable to the microstructures achieved at the beginning of the colon, i.e. 

using minimal ‘artificial’ processing. Following mastication, samples were size-fractionated 

to allow comparison of the effect of particle size on subsequent fermentation behaviour. 

Mango and banana, two widely consumed tropical fruits were used as model systems.  

 

Part A. Fermentation kinetics of masticated mango and banana tissue during 

colonic fermentation in vitro 

4.2. Introduction to Part A 

Williams et al. (2005) developed a cumulative gas production technique for use with 

monogastric inocula, which involves a batch culture to measure gas production kinetics 

(Theodorou et al., 1994) and generated end-products such as short chain fatty acids 

(SCFA) and ammonia (NH3) (Jacobs, Gaudier, van Duynhoven, & Vaughan, 2009). The 

volume of gas produced as a result of fermentation acts as an index of fermentation 

activity, and contains a mixture where the predominant gas (CO2) is derived from primary 

fermentation and the reaction of acidic fermentation end-products with basic bicarbonate 

ions (Davies et al., 2000). SCFA such as acetic, propionic and butyric acids are major 

products of carbohydrate fermentation and are known to be beneficial in terms of energy 

contribution and health (Chiu & Stewart, 2012), whereas NH3, one of the end-products of 

protein and peptide fermentation (Hendriks, van Baal, & Bosch, 2012), has potentially 

negative effects on the long-term health of colonic epithelial cells (Mosenthin, 1998). 
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4.3. Materials and methods 

4.3.1. Preparation of fruit substrates  

Ripe Kensington Pride mangoes and Cavendish bananas were procured from local stores 

in Brisbane, Queensland, Australia and selected based on typical eating maturity. The 

fruits were first subjected to in vivo human mastication and wet-sieve fractionation (Fig 4.1) 

as described in Chapter 3 (ethical clearance No. 2012000683) (Low, D'Arcy, & Gidley, 

2015) followed by in vitro gastrointestinal digestion (Day et al., 2012) and centrifugation at 

3000 g for 10 min (Avant®JE centrifuge, JA14 rotor). The pellets were washed three times 

with water (1:3) to remove salivary components such as enzymes, soluble sugars and 

amino acids. The samples were stored at 4C prior to fermentation in vitro.  

 

 
Figure 4.1. Images of chewed and fractionated (A) banana and (C) mango bolus particles 
of (i) 2.8 mm, (ii) 1 mm and (iii) 0.075 mm apertures. B(i-iii) and D(i-iii) show a magnified 
view of each fraction respectively. 
 



 

 

 

 
86 

4.3.2. Collection and preparation of fresh faecal inoculum 

Faecal inoculum was prepared as described previously (Williams, Bosch, Boer, Verstegen, 

& Tamminga, 2005b). Faeces were collected directly from five pigs (animal weight ~35 kg) 

under ethics approval of the University of Queensland Animal Ethics Committee 

(SAFS/111/13/ARC). Prior to faecal collection, the pigs were strictly fed a semi-purified 

diet based on highly digestible maize starch and fishmeal for ten days to avoid adaption of 

the gut microbiota to any of the substrates being used (Wang, Williams, Ferruzzi, & 

D'Arcy, 2013). Faeces were kept in pre-warmed CO2-filled vacuum flasks during transport 

to the laboratory. To avoid (as far as possible) any effect of genetic variation of the pigs, 

the faeces from all five pigs were combined to make an inoculum representative of pigs as 

a whole. The faeces were then mixed (1:5) with pre-warmed saline (9 g/L NaCl), 

homogenised for 1 min under CO2 and strained through four layers of muslin cloth.  

 

4.3.3. Cumulative gas production  

The cumulative gas production technique was slightly modified from Williams et al. 

(2005b). Fresh unfractionated and fractionated mango (4.8 ± 0.4 g) and banana (3.1 ± 1.4 

g) particles (each particle size, n=4) were weighed into 120 mL serum bottles containing 

82 mL fermentation medium (76 mL basal solution, 1 mL reducing agent, 1 mL 

vitamin/phosphate buffer solution, 4 mL bicarbonate buffer). Unfractionated mango and 

banana refers to expectorated mango and banana boluses that were not sieved, 

containing mixed size particles. Faecal inoculum (4 mL) was added to each serum bottle 

within 2 h of faecal collection and incubated at 39°C (the body temperature of pigs). A 

steady stream of O2-free CO2 flowed into the fermentation bottles at all times prior to 

sealing with butyl rubber stoppers and aluminium crimp seals. Experimental blanks 

containing only inoculum and medium were also included. Cumulative gas readings were 

measured via a pressure transducer (Type 453A, Bailey and Mackay Ltd., Birmingham, 

UK) and a LED digitial readout voltmeter (Tracker 200) after insertion of a hypodermic 

syringe needle through the butyl rubber stopper above the fermentation solution. The 

head-space pressure and volume of gas were measured in each fermentation bottle (178 

bottles) at 0, 2, 4, 6, 8, 10, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 43, 46 and 48 h of the 

fermentation period according to the method of Theodorou et al. (1994). Then, the 

pressure and volume of gas recorded for each bottle was regressed to provide a corrected 

volume at each time per bottle. After cumulative gas readings were carried out for the 

bottles at their respective time intervals, they were placed immediately in iced-water to 

inhibit further microbial activity.  
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4.3.4. Post fermentation analyses  

pH of fermentation solutions were recorded and aliquots taken for SCFA, NH3 and 

polyphenol analyses for all the fermentation bottles after removal at their respective time 

intervals. The remaining bottle contents were centrifuged at 4000 g for 10 min at 4C and 

then washed twice with water. Dry matter (DM) of fermented samples (and substrates 

before fermentation) was determined by drying to a constant weight at 103C (ISO 6496, 

1999) and then ashing by combustion at 550C (ISO 5984, 1978). 

 

Analysis of the SCFA concentration of fermented samples was modified from Vreman, 

Dowling, Raubach, and Weiner (1978) with modifications to the microvacuum distaillation 

apparatus, which has been expanded to distaill 12 samples at one time. Sample aliquots 

(0.9 mL) and 1 M sulphuric acid (0.1 mL) containing 500 mM formic acid were added to the 

Thunberg tube, frozen with liquid N2 and vacuum distillated. SCFA concentrations of the 

extracted aliquots were analysed by an Agilent GC-FID (HP6890) (Agilent Technologies, 

Mulgrave, VIC, Australia) and DB-FFAP capillary column (30 m x 0.5 mm) at a flow rate of 

5.3 mL/min with helium as the carrier gas. Injector and detector temperatures were 250°C, 

and oven temperature was programmed from 90°C (1 min) to 190°C (1 min) at 10°C/min. 

The injection volume was 0.5 μL. Iso-caproic acid was used as an internal standard. The 

SCFA mixed reference comprised of acetic acid (52.51 mM), propionic acid (13.4 mM), 

iso-butyric acid (1.07 mM), n-butyric acid (5.45 mM), iso-valeric acid (0.91 mM), n-valeric 

acid (0.92 mM), n-caproic acid (0.16 mM) and heptanoic acid (0.15 mM) (Sigma-Aldrich, 

Castle Hill, NSW, Australia). The branched-chain ratio (BCR) was calculated as the ratio of 

the concentrations of branched chain acids (isobutyric, isovaleric and valeric acids) to 

straight chain acids (acetic, propionic acid and butyric acids) that had all been corrected to 

mg of acetic acid equivalents (AAE) using their respective molar masses. 

 

The analysis of NH3 in the fermented samples was modified from (Baethgen & Alley, 

1989). Sample aliquots were mixed with 0.2 N HCl (1:1) with the concentrations of 

ammonium and nitrogen being determined using the reduction of ammonium ions by 

sodium salicylate and nitroprusside in a weakly alkaline buffer (free chlorine). The resulting 

coloured complex was measured with a UV-Vis spectrophotometer (OlympusAU400, 

Tokyo, Japan) at 650 nm. 
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4.3.5. Nuclear magnetic resonance (NMR) spectroscopy 

Solid-state 13C CP/MAS NMR 

Mango and banana particles, before and after fermentation (0 h and 48 h respectively), 

were freeze-dried and analysed by solid-state 13C CP/MAS NMR spectroscopy using a 

Bruker MSL-300 spectrometer (Bruker, Karlsruhe, Germany) at a frequency of 75.46 MHz, 

to detect for the presence of cellulose and starch. Samples were lightly ground and stirred 

to ensure homogeneity, from which 200 mg was packed into a 4 mm diameter, cylindrical, 

PSZ (partially stabilized zirconium oxide) rotor with a KelF end cap. The rotor was spun at 

5-6 kHz at the magic angle (54.7°). The 90° pulse width was 5 μs and a contact time of 1 

ms was used for all starches with a recycle delay of 3 s. The spectral width was 38 kHz, 

acquisition time 50 ms, time domain points 2 k, transform size 4 k, and line broadening 50 

Hz. At least 2400 scans were accumulated for each spectrum.  

 

Solution state 1H NMR 

Similarly, mango and banana samples, before and after fermentation (0 h and 48 h 

respectively) were analysed for the presence of galacturonic acid, pectic acid and various 

sugars. The freeze-dried samples (5 mg) were dissolved at 80°C overnight in 650 µL of d6-

DMSO containing 0.5 wt % LiBr. After the samples were cooled to room temperature, 

sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 (TSP) in D2O was added as an internal 

standard. The addition of 50 µL of deuterated trifluoroacetic acid (d1-TFA) directly before 

each measurement moved the HOD peak (Tizzotti, Sweedman, Tang, Schaefer, & Gilbert, 

2011). 1H NMR spectra were measured on a Bruker Avance 500MHz spectrometer 

operating at 298K equipped with a 5 mm PABBO probe using 12 µs 90° pulse, 3.91 s 

acquisition time, 1 s relaxation delay and 64 scans.  

 

4.3.6. Confocal laser scanning microscopy (CLSM) 

Microscopy of mango and banana particles before and after fermentation (0 h and 48 h 

respectively) was carried out under 10x and 40x objective lenses using CLSM (LSM700, 

Carl Zeiss, Germany), differential interference contrast (DIC) and Zen (Black) 2011 

software. Fluorescence of cell walls was observed at an excitation  of 355 nm, emission  

from 400-440 nm, and laser power intensity of 2% after staining with Calcofluor. 

Fluorescence of starch granules was observed at an excitation  of 488 nm after staining 

with 3-aminopropyl-trimethoxysilane (APTS) followed by washing samples with 70% 

ethanol, incubating in APTS solution (10 mM APTS in 15% acetic acid) at 30°C overnight 
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(Chen et al., 2011; Chung & lai, 2006; Wei et al., 2010), washing five times with Milli-Q 

water and centrifuging at 3000 g for 10 min. 

 

4.3.7. Curve fitting and statistical analysis 

The cumulative gas production measured over time was corrected to the mL of gas 

produced per g of substrate DM, and the dry matter cumulative volume (DMCV48) was 

fitted to the monophasic Michaelis-Menten model (Groot, Cone, Williams, Debersaques, & 

Lantinga, 1996) and calculated from Eq. (1): 

DMCV48 = A/(1 + (C/t)B)                   (1) 

 

where A is the asymptotic gas production (mL), B is the switching characteristic of the 

curve, C is the time at which half of the asymptotic value is reached (T1/2) and t is the 

fermentation time (h). The maximal rate of gas production, Rmax (mL/h) and the time at 

which it occurs, TRmax (h) were calculated from Eq. (2) and (3): 

Rmax = (A(CB)B(TRmax
(-B-1)))/(1+(CB)TRmax

(-B))2            (2) 

 

TRmax = C(((B-1)/(B+1))1/B)               (3) 

 

All parameters were tested for significant differences (effects of fruit, particle size and 

interaction between fruit and particle size) using the Tukey-Kramer multiple comparison 

procedure as defined in Eq. (4): 

Υ = μ + Fi + Pi + (Fi x Pi) + εi              (4) 

where Υ is the dependent variable, μ is the mean, Fi is the effect of fruit, Pi is the effect of 

particle size, (Fi × Pi) is the interaction between fruit and particle size, and εi is the error 

term. Effect of replicate bottles was also examined separately but did not contribute 

significantly to any of the parameters (P>0.05), and was therefore excluded from the main 

model effects. Statistical analyses were performed using SAS (9.3) NLIN (curve fitting) and 

GLM (significant difference) procedures. 

 

4.4. Results 

4.4.1. Fermentation kinetics of mango and banana 

The cumulative gas profiles for mango and banana are shown in Fig 4.2. Measured data 

points fitted well to the mathematical predictions of Groot’s model (Groot et al., 1996) for 

all substrate types except for the unfractionated mango, where the measured gas values 

were higher than the predicted curve.  A comparison of replicates (n=4 per particle size 
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per fruit) indicated that the sample bottles 1, 2, 7, 11, 15, 17 behaved as outliers (Fig A2.1, 

Appendix 2) and were therefore excluded from Proc GLM analysis to avoid false means 

because the high variation in raw data contributed to exaggerated estimates for T1/2, TRmax 

and Rmax values based on the curve fitting results. Updated DMCV48 means are shown in 

Fig 4.3. Interestingly, there was an opposite trend for mango and banana as a function of 

particle size, although the absolute differences between particle sizes were small 

(P=0.43). An inverse relationship between particle size and gas production was observed 

for mango, in contrast to banana, where larger particles showed faster and more extensive 

gas production. All substrates started with an initial lag phase of 2-6 h, suggesting an 

adaption time for physical adhesion of cellulolytic microbial species to the fibrous plant cell 

wall components (Flint, Scott, Duncan, Louis, & Forano, 2014; Van Soest, 1994).  

 

 

Figure 4.2. Cumulative dry matter cumulative volume profiles of (A) mango () and (B) 

banana (☐) particle size fractions and fitted monophasic curve predictions () according to 
Groot’s mathematical model during 48 h microbial fermentation in vitro. Note the different y 
axis scales for the two profiles. M: mango, B: banana, P: predicted, DM: dry matter. 
 

Mango was more readily fermentable (Fig 4.3), and to a greater extent, as the total gas 

production for mango (440 mL/g DM) notably greater than for banana (113 mL/g DM). 

Mango reached its maximum rate of gas production (Rmax=17 mL/h) at 19 h while banana 

only reached its maximum rate (Rmax=3 mL/h) after 31 h, reflecting a significant fruit effect 

(P<0.0001). The half-time to reaching asymptotic gas production also differed significantly 

between mango and banana (25 h and 54 h respectively, P<0.0001). Neither the end-point 

gas production (48 h) nor Rmax were significantly different between particle sizes (P>0.05), 

but TRmax occurred significantly later for the 0.075 mm particles (P=0.0002). The effects of 

fruit type and particle size, and any interactions of the fermentation kinetic parameters 

(DMCV48, T1/2, TRmax, Rmax), are shown in Table 4.1. However, fermentation of the 
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substrates apparently would have extended beyond 48 h, so gas production asymptotes 

were extrapolated rather than observed (Figs 4.2 and 4.3), particularly for banana. 

 

 

Figure 4.3. Combined dry matter cumulative volume profiles of mango () and banana (☐) 

particle size fractions, and experimental blank () during 48 h microbial fermentation in 
vitro. Data is expressed as means±standard error. M: mango, B: banana, Blank&In: blank 
containing only inoculum and medium, DM: dry matter. 
 
Table 4.1. Fruit and particle size effects on fermentation kinetics of masticated mango and 
banana during 48 h microbial fermentation in vitro. 

 
Data is expressed as means of replicates. a,b,cDifferent letters within each treatment effect denote 
significance differences (P<0.05). DMCV48: cumulative gas production during 48 h fermentation, T1/2: half 
time of asymptote gas production, TRmax: time of maximum rate of gas production, Rmax: maximum rate of 
gas production. MSD: minimum significant difference, Psize: particle size. 

 

4.4.2. pH, and short chain fatty acids and ammonia production in mango and banana 

At the end of fermentation, pH values formango and banana ranged from 6.15-6.55 (Table 

4.2), while blanks were in the pH range of 6.34-6.57 for all time points up to 48 h. There 
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was no significant difference in pH considering the effects of fruit or particle size, or any 

interaction amongst them (P=0.52), indicating there were similar pH environments during 

the fermentation of both fruits and that the buffering capacity of the medium was sufficient 

for the fermentations taking place. 

 
Table 4.2. Fruit and particle size effects on pH, short chain fatty acids (mmol/g dry matter), 
ammonia (mmol/g dry matter) and branched chain ratio of masticated mango and banana 
during 48 h microbial fermentation in vitro. 

 
Data is expressed as means of replicates. a,b,cDifferent letters within each treatment effect denote 
significance differences (P<0.05). 1All individual SCFA production values are also converted using acetic 
acid equivalents, i.e. AAC=acetic x 60; APR=propionic x 74 x 1.21; ABU=butyric x 88 x 1.36; 
AIBU=isobutyric x 88 x 1.36; AIVAL=isovaleric x 102 x 1.46; AVAL=valeric x 102 x 1.46. 
BCR=(AIBU+AIVAL+AVAL)/(AAC+APR+ABU). MSD: minimum significant difference, Psize: particle size, 
SCFA: short chain fatty acids, NH3: ammonia, BCR: branched-chain ratio. 

 
Changes in total SCFA and NH3 concentrations with time are shown in Fig 4.4A-B. All 

mango fractions consistently produced significantly larger amounts of total SCFA in 

comparison with banana (P<0.0001), which is in agreement with the retarded 

fermentability of banana as evidenced in the lower volume and rate of gas production. The 

total SCFA concentration initially started from 0.7 mmol/g and showed a gradual increase 

over 48h for both fruit types. Small but significant particle size effects were observed for 

total SCFA (P<0.0001). The unfractionated particles and smallest particles (0.075 mm) 

produced significantly higher total SCFA (12.4 and 11.9 mmol/g DM) than the 2.8 mm and 

1 mm particles (10.4 and 9.6 mmol/g DM). This trend was also observed for the major 

individual SCFA- acetic, butyric and propionic acids (Table 4.2.). The higher values for 

total SCFA contents of unfractionated fruit particles compared with all subsequent fractions 

(Table 4.2) suggests that there was a small loss of fermentable material during the 

fractionation process, particularly for banana (Fig 4.4).    
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NH3 concentrations were at least two-fold higher in all mango particle sizes compared to 

banana (P=0.0026). Similarly to SCFA production, the unfractionated and 0.075 mm 

mango particles had significantly higher NH3 concentrations than in banana. On the other 

hand, there was no significant difference between particle sizes for banana. The 

concentration of NH3 peaked between 8 and 18 h, and then declined. From 0 h, NH3 

concentrations of >2 mmol/g DM for both fruits suggest that some bacterial species within 

the porcine faecal microbiota have actively fermenting some peptide/amino acid source 

present in the inoculum and/or medium.  

 

 

Figure 4.4. (A) Total short chain fatty acids (SCFA) and (B) ammonia (NH3) production 

profiles of mango () and banana (. . .) particle size fractions (n=4) during 48 h microbial 
fermentation in vitro. SCFA and NH3 concentrations are reported as mmol/g dry matter of 
starting substrates weighed into fermentation bottles. Data is expressed as 
means±standard error. a,b,c,dDifferent letters within substrates denote significance 
differences for the end-point values (48 h) at P<0.05. 
 

 
Figure 4.5. % Distribution of individual major short chain fatty acids (SCFA): acetic acid 
(Ac), propionic acid (Pr) and butyric acid (Bu) in mango and banana particle size fractions 
(n=4). M: mango, B: banana. 
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Following the usual pattern for gut fermentation, acetic acid was the major SCFA produced 

(54-66%) in both fruits, followed by propionic acid (13-19%) and butyric acid (9-17%) (Fig 

4.5), whereas valeric, isovaleric and isobutyric acids were minor SCFA, collectively 

accounting for <10%. All these SCFA concentrations (mmol/g DM) were subsequently 

converted into acetic acid equivalents (Table 4.2) using their respective molar mass to 

obtain a branched-chain ratio (BCR) to allow a comparison of individual SCFA according 

to their carbon content. The BCR gives an indication of the proportion of SCFA more likely 

to be related to protein fermentation (Williams et al., 2005b). Banana fermentation was 

associated with a higher proportion of branched-chain SCFA (isobutyric, isovaleric and 

valeric acids) to the straight chain acids (acetic, propionic and butyric acids), leading to a 

significantly higher BCR (P<0.0001) for banana than for mango. 

 
4.4.3. Physical structures and major polysaccharide composition affecting 

fermentation 

From confocal microscopy, it could be seen that chewed mango particles subjected to in 

vitro gastrointestinal digestion contained soft parenchyma (fleshy) tissue, which 

disappeared after microbial fermentation, leaving mostly cellulosic vascular fibres (Fig 

4.6A). This was confirmed by the 13CP/MAS NMR spectra of fermented mango (Fig 4.7) 

where the dominant signal at 105 ppm was assigned to cellulose C-1 (Dick-Perez et al., 

2011; Ng et al., 2014). These vascular fibres are structured but loosely detached from the 

rest of the sample material. Vascular fibres were also present in banana after 

fermentation, but these were less pronounced than in mango, apparently thinner (Fig 

4.6Cii), and were not resolved from more major peaks by NMR.  

 
Banana after chewing and in vitro gastrointestinal digestion comprised mostly of starch, 

before and after fermentation (Fig 4.7). Before fermentation, starch granules were 

generally observed to be encapsulated by intact cell walls (Fig 4.6Bi). After fermentation, 

cell walls surrounding the starch were no longer detected, but liberated starch granules 

were still clearly visible (Fig 4.6Bii). This was supported by the solid state 13C NMR spectra 

showing a characteristic starch spectrum (Tan, Flanagan, Halley, Whittaker, & Gidley, 

2007), which overlapped with lower intensity cellulose signals (95-105 ppm), for samples 

before and after fermentation. Microscopic evidence of partial fermentation of banana 

starch was observed by the apparently roughened or scratched granule surfaces, a typical 

morphology of early stages of amylolytic starch breakdown as seen in banana (Zhang, 

Whistler, BeMiller, & Hamaker, 2005) and potato (Dhital, Shrestha, & Gidley, 2010). 
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Figure 4.6. Differential interference contrast images of A(i) mango (2.8 mm), B(i) banana (2.8 mm) and C(i) banana (0.075 mm) cellular 
structures in blue fluorescence before fermentation, and (D) banana starch granules (10-30 µm in length) in green fluorescence before 
fermentation. Thick cellulose vascular fibres remained in A(ii) mango after fermentation, whereas fermented banana comprised mostly of 
B(ii) starch and C(ii) some vascular fibres. The original image presented as (E) shows the rough and/or scratched surfaces of banana 
starch granules after 48 h fermentation (63x magnification). 

A(ii) B(ii) C(ii) E 

A(i) 
B(i) D 

100m 

C(i) 

100 µm 
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Figure 4.7. 13CP/MAS and 1H NMR spectra of masticated (A, C) mango and (B, D) banana 
particles of 2.8 mm and 0.075 mm respectively, before and after 48 h microbial 
fermentation in vitro. In (A) mango samples after fermentation, the chemical shift at 99 
ppm is an artefactual spinning side band from the intense carbonate residue (164 ppm) 
and at 105 ppm is the C-1 of cellulose. In (B), the shifts between 95 and 105 ppm is the C-
1 of starch. In (C), the sharp peaks before fermentation are anomeric protons of pectic 
acid residue (5.4 ppm) (Dinola et al., 1994), rhamnose residue (5.24 ppm) (de Bruyn, de 
Gussem, & Dutton, 1976), galacturonic acid and galactose residues (Marcon et al., 2005). 
The broad shift from 5.05-5.25 ppm in (D) banana is from anomeric protons of starch. M: 
mango, B: banana, 2.8: 2.8 mm chewed fraction, 0.075: 0.075 mm chewed fraction. 
 

Pectin was present in both mango and banana as observed in the proton (1H) NMR 

spectra (Fig 4.7C-D) but this was not obvious in the 13CP/MAS NMR spectra because of 

the overlap of the spinning side band (ca 99 ppm) from the carbonate peak (164 ppm) with 

galacturonan C-1, which would appear from 98-101 ppm (Dick-Perez et al., 2011). 

Rhamnose residue was present in mango as the major neutral sugar (Fig 4.7C), which has 
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been similarly reported in Ataulfo and Tommy Atkins cultivars (Garcia-Magana, Garcia, 

Bello-Perez, Sayago-Ayerdi, & de Oca, 2013), but was not observed in banana. 

Rhamnose, along with galactose and galacturonic acid residues were apparently utilised 

by the faecal microbiota, as they were not observed for either fruit after fermentation. 

Bacterial species capable of degrading pectin and/or cellulose in porcine fecal microbiota 

have been reported in numerous studies (Rink, Bauer, Eklund, & Mosenthin, 2011; 

Sappok et al., 2012; Williams et al., 2005a). 

 

4.5. Discussion 

4.5.1. Effects of fruit and particle size on fermentation kinetics 

Gas kinetics profiles showed significant differences between between mango and banana 

both in terms of kinetics and end-points. Disintegration of the plant cell wall network and 

cell structures during in vivo mastication led to particles of varying sizes (Chapter 3). The 

largest chewed fraction (2.8 mm) consisted of more fermentation-resistant cellulosic 

vascular tissues, whereas the 1 mm and 0.075 mm fractions comprised mostly single cells 

and ruptured cell fragments, and less or no vascular fibres (shown in Chapter 3, Fig 3.4). 

There was no significant particle size effect (P=0.43) on cumulative gas production, 

however, there was a likely trend where smaller mango particles of 0.075 mm were 

fermented more rapidly and extensively, and produced more gas (485 mL/g DM) than the 

larger (>1 mm) and unfractionated particles (411-445 mL/g DM). While decreasing particle 

size confers an expansion of surface area available for microbial accessibility and/or 

attachment (Guillon, Auffret, Robertson, Thibault, & Barry, 1998; Parada & Aguilera, 

2007), the relative amount of vascular fibres is also a potential factor influencing particle 

size effect. Fig 4.3 shows that the significant difference in surface area due to particle size 

was associated with kinetic rate (i.e. active fermentation) rather than lag (i.e. colonisation). 

 

In contrast, the larger banana cell-cluster particles (2.8 mm) produced more gas (136 mL/g 

DM) than the smallest (0.075 mm) fraction (93 mL/g DM). Larger banana particles may 

have contained a higher proportion of more fermentable cell wall structures. Similarly, in a 

previous study, multi-cellular (137-298 μm) carrot particles were fermented faster (23 

mL/h) compared to 50-75 μm single carrot cells and fragments (8 mL/h) (Day et al., 2012). 

The plant cellular composition or architecture appears to have a more significant impact 

than particle size or available surface area (to faecal microbiota) during fermentation. Fruit 

and vegetable matrices of varying physical and structural characteristics, i.e. taproot or 

fruit, appeared to have a strong influence on substrate fermentability, as did the cell 
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contents. In this study, differences in substrate fermentability were due to a fruit effect 

rather than a particle size effect, presumably due to the soft tissue structures of mango 

and banana. 

 

4.5.2. Degradation of cell walls is more extensive than that of resistant starch 

Chewed pieces of mango fruit were readily fermented based on the 48 h DMCV and SCFA 

values, leaving mostly long cellulose vascular fibres after fermentation, which would be 

expected to be difficult to ferment by intestinal microbiota (Ismailbeigi, Reinhold, Faraji, & 

Abadi, 1977; Otles & Ozgoz, 2014; Yu, Liu, Shen, Jiang, & Huang, 2005) depending on 

the chemical structure, colonic microbiota and residence time in the colon (Anderson & 

Chen, 1979). The strands of cellulose in mango appear not strongly connected to the 

parenchyma (fleshy) tissue, and were sometimes observed as separate strands before 

microbial fermentation, but clearly separated after fermentation. There appears to be a 

hierarchy in substrate utilisation as evidenced by the preferential degradation of (thinner) 

primary parenchyma cell walls over cellulosic vascular fibres.  

 

Banana was far less efficiently fermented than mango, likely due to clear differences in 

polysaccharide compositions. Cellulose was the major polysaccharide component of 

mango before and after fermentation while starch was the major component of banana 

before and after fermentation. Starch granules encapsulated within intact banana cell walls 

survived mastication, as well as gastrointestinal digestion in vitro. The thin banana cell 

walls present before fermentation were apparently all fermented, releasing the starch 

granules, which the cell walls had encapsulated previously. Most starch granules 

appeared smooth after mastication and digestion, but exhibited a parallel-striated surface 

after fermentation (Fig 4.6E). The fact that numerous and relatively intact starch granules 

were observed at the end of fermentation shows that they were not rapidly fermented as 

soon as their encapsulating cell wall had been degraded. Indeed, banana starch in the 

granular form is relatively resistant to digestion by pancreatic enzymes (Soares et al., 

2011), similarly to other B-type starches such as potato. When treated with pancreatic 

amylases and amyloglucosidases in vitro, potato starch granules showed the same type of 

‘scratching’ or exo-corrosion (Dhital, Shrestha, & Gidley, 2010) as found in the present 

study for banana starch granules after microbial fermentation.  

 

The smooth dense surface of banana starch granules could also partially account for the 

intrinsic resistance of such granules to enzyme-catalysed hydrolysis by faecal microbiota. 



 

 

 

 
99 

Additionally, banana starch has been previously reported to be highly resistant to in vivo 

human small intestinal digestion (Cummings, Beatty, Kingman, Bingham, & Englyst, 1996; 

Faisant et al., 1995a). The thick external layer (several µm) of larger blockets (Faisant, 

Gallant, Bouchet, & Champ, 1995b) composed of a hard and well organised material 

(Soares et al., 2011), surrounding the banana starch granules has been proposed to 

impede enzyme action and thus reduce the hydrolysis rate. Colonic bacteria reportedly 

utilise a Starch Utilisation System to get at these starch structures to extract glucose for 

energy (Martens, Koropatkin, Smith, & Gordon, 2009), but the evidence from this study 

suggests that colonic microbiota may not be any more effective than pancreatic amylases 

in overcoming the hard surface layer of banana starch granules. 

 

Striations on the starch granule surface indicate the presence of microbial amylolytic 

activity in the fermentation medium, leading to erosion, but with limited hydrolytic effect. 

Some areas of the starch granule are more likely to be difficult to hydrolyse than other 

areas (crystalline regions appearing after partial hydrolysis/digestion) (Zhang et al., 2005), 

and banana starch was described as a B-type crystalline entity (Hamaker & Tuncil, 2014). 

Additionally, during weighing of the masticated fractions into the fermentation bottles, it 

was noted that the banana fractions had a more physically compacted structure, which 

made it more difficult to obtain seemingly homogenous sub-samples. Accessibility, as 

influenced by the entrapping matrix of banana cells and/or cell clusters appeared to restrict 

access of the microbiota and/or their enzymes into the fruit substrates.  

 

4.5.3. Higher short chain fatty acids and ammonia concentrations in mango but 

higher branched-chain ratio in banana 

Differencesin SCFA and NH3 between fruits were more pronounced than differences in 

particle sizes, where 68% and 64% significantly (P<0.0001) greater concentrations of 

SCFA and NH3 respectively, were observed in mango compared with banana (P<0.0001). 

This, correlates well with the 74% greater DMCV48 value for mango and is consistent with 

the expectation that more rapid and extensive fermentation is generally associated with 

higher SCFA production in vitro (Topping & Clifton, 2001). However, the higher NH3 

production in mango was not accompanied by a higher BCR. Particle size played a small 

role in SCFA production and had no significant effect on NH3 production (P>0.05). Another 

fermentation study of fine wheat bran also found that finer wheat particles (50 μm) 

produced higher SCFA concentrations than did the larger clusters (758 μm) (Jenkins et al., 

1999).  
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A lower total SCFA production typically corresponds to a proportionate increase in NH3 

level. SCFA production in banana showed a lower total production, but there was no 

concomitant increase in NH3, which would have been expected. However, banana 

fermentation was associated with a slightly higher BCR (P<0.0001), further validating the 

differences between these two fruits. Branched-chain SCFA are usually formed as a result 

of bacteria metabolising undigested and endogenous proteins, peptides and amino acids, 

particularly when carbohydrates are in short supply as an energy source (Hendriks, van 

Baal, & Bosch, 2012) or difficult to utilise as in this study. Here, NH3 production was 

reduced for banana, which reflected the differential availability of fermentable carbohydrate 

(Cone, van Gelder, & Driehuis, 1997; Sappok et al., 2012), thus increasing the BCR. 

 

The composition of dietary polysaccharides available for fermentation also influenced the 

proportions of SCFA produced. Resistant starch in banana appeared to favour an 

increased production of butyric acid (Fig 4.5), agreeing with previous reports that in vitro 

colonic fermentation of resistant starch is associated with elevated butyrate levels 

(Casterline, Oles, & Ku, 1997; Rose et al., 2009). Conversely, the higher % acetic acid 

observed in mango can be ascribed to the presence of higher levels of cellulose and 

pectin, which is consistent with reported studies (Annison & Topping, 1994; Low, 1993) 

showing that acetate production predominates over propionate and butyrate for diets 

containing higher levels of non-starch polysaccharides.  

 

4.6. Concluding Remarks 

The investigation of fermentation kinetics of masticated particles of mango and banana 

has demonstrated distinctive differences between the two fruits in terms of cellular 

architecture and starch content, which seemed to outweigh any effects of particle size on 

colonic fermentability. A decrease in particle size and the concomitant increase in 

available surface area would have been expected to increase the total gas production by 

enhancing microbial accessibility. However, colonic fermentation differences between 

larger particle clusters (2.8-1 mm) and single cells or cell fragments (0.075 mm) were not 

as significant in the soft tissues of mango and banana studied here, as compared to a 

previous study on carrot with a more robust cellular structure (Day et al., 2012). The fruit 

(parenchyma) fleshy cells were fully or mostly fermented during fermentation, preferentially 

over resistant starch in banana, and over the thick cellulosic vascular fibres in mango. The 

slow fermentability of banana starch conferred by its intrinsic resistance and cell-wall 

encapsulation may have implications on calorific content, satiety, glucose metabolism, 



 

 

 

 
101 

transit rates along the colon, and deserves further study. The higher absolute levels of 

butyrate production from mango could actually be more important in terms of contributing 

to anti-inflammatory and anti-carcinogenic properties (Tedelind, Westberg, Kjerrulf, & 

Vidal, 2007; Vinolo, Rodrigues, Nachbar, & Curi, 2011; Williams, Coxhead, & Mathers, 

2003) rather than the higher % ratio of butyrate to acetate/propionate in banana. Further 

studies investigating the extended fermentation of both fruits over 72 h and longer, and the 

microscopic degradation of banana cell walls with time, preferably 3-hourly should also be 

explored in future work. 
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Chapter 4. Fermentation kinetics and microbial biotransformation of polyphenols 

during colonic fermentation of masticated mango and banana in vitro 

 

Part B. Polyphenol-microbial biotransformation during colonic fermentation of 

masticated mango and banana in vitro  

4.7. Introduction to Part B 

In vitro bioavailability studies, such as through the application of Caco-2 cells are relatively 

well established for many fruit polyphenols (Boyer, Brown, & Liu, 2004; Cilla et al., 2009; 

Teng et al., 2012; Vaidyanathan & Walle, 2001; Van Buggenhout et al., 2010; Walgren, 

Lin, Kinne, & Walle, 2000; Walle, Galijatovic, & Walle, 1999). However, little work has 

been reported concerning bioaccessibility of polyphenols from fresh fruit, especially in the 

colon. A further area with limited information is the fate of polyphenols that are not 

released or absorbed in the small intestine, and therefore enter the colon, bound to or 

trapped within plant cell walls. As plant cell walls are likely to be fully fermented in the 

colon, these trapped/bound polyphenols will be released and available for absorption 

directly through the colon epithelium, or metabolised by colonic bacteria before being 

absorbed, or excreted without any further metabolism. These metabolites and/or 

catabolites may be responsible for part of the health effects attributed to dietary 

polyphenols (Crozier, Del Rio, & Clifford, 2010; Dall'Asta et al., 2012; Gonzalez-Barrio, 

Edwards, & Crozier, 2011; Scalbert, Manach, Morand, Remesy, & Jimenez, 2005; 

Wilkinson et al., 2008). 

 

Solid residues from organic solvent extractions or pomaces from fruits and vegetables 

have previously tended to be disregarded, although a significant amount of polyphenols 

may remain in these residues and constitute the non-extractable polyphenols (NEPP). 

Extractable polyphenols may only be the tip of the iceberg (Saura-Calixto, 2012) while 

NEPP or polyphenols associated with the indigestible fraction represent the majority of 

dietary polyphenols. Studies on NEPP (proanthocyanidins, hydrolysable tannins and some 

phenolic acids) are quite scarce, indicating NEPP is an interesting group from a nutritional 

point of view as some may be hydrolysed by intestinal/colonic microbiota and/or secreted 

enzymes, and become potentially bioavailable in the human gut.  

 

In a Spanish diet consisting of solid fruits, vegetables, legumes and cereals, 42% of the 

total polyphenols were estimated as bioaccessible in the colon, while 10% were 

inaccessible and remained in the food matrices after the whole digestion process and were 
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excreted (Saura-Calixto, Serrano, & Goni, 2007). Proanthocyanidins in the water-insoluble 

polymer fraction of Spanish banana cell walls were found to persist after 16 h of acid 

hydrolysis (Bennett et al., 2010), implying that C-C (or carbon-carbon) bond linkages 

between some proanthocyanidins and cell walls are not hydrolysed by acid, compared to 

the acid-labile C-O (or carbon-oxygen) linkages between other proanthocyanidins and 

polyphenols and/or polysaccharides. Most known fermentation or metabolism studies have 

focused on the degradation products of polyphenols from berries or single compounds, but 

none has been reported for either mango or banana. 

 

Polyphenols must be released from the food matrix during chewing or digestion in the 

upper gastrointestinal tract for direct absorption to occur. If they are bound to plant cell 

walls and become unavailable for small intestinal absorption, these complexes may be 

transported to the colon where fermentation of fibrous material ensues (Padayachee et al., 

2013). Therefore, the objectives of this study are to investigate the colonic release and 

metabolism of dietary polyphenols in a standardised in vitro model mimicking colonic 

fermentation of the solid residues remaining after in vivo human mastication and in vitro 

gastrointestinal digestion of fresh mango and banana fruits. 

 

4.8. Materials and methods 

4.8.1. Fruit substrates, in vivo mastication and in vitro digestion 

Unfractionated (mixed sized particles) particles that were produced from in vivo 

mastication of mango and banana flesh were then subjected to in vitro digestion using the 

methods described in Chapter 3 and Chapter 4 Part A. The solid residues of both fruits left 

after these two processes were the samples subjected to colonic fermentation detailed in 

section 4.8.2. 

 

4.8.2. Fresh faecal inoculum and cumulative gas production 

Preparation of faecal inoculum, and the cumulative gas production technique are 

described in Chapter 4 Part A. Additionally, experimental blanks containing only the faecal 

inoculum and basal medium were included for comparison of matrix background 

absorption during UPLC analysis. Residues of digested fruit particles (Section 4.8.1) were 

simultaneously fermented in individual fermentation bottles to monitor polyphenol 

metabolism at time intervals of 0, 2, 4, 6, 8, 10, 12, 18, 24 and 48 h. 
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4.8.3. Polyphenol analyses  

Fermented solution (1 mL) was added to formic acid (200 µL), centrifuged at 4C for 5 min 

at 10,000 g, filtered through 0.2 μm GHP Acrodisc filters (Pall, Surry Hills, NSW, Australia), 

flushed with CO2, and stored at -80C prior to UPLC analysis. A Waters Acquity UPLC-

PDA system (Waters, Rydalmere, NSW, Australia) with a VisionHT C18 Basic RP column 

(100 x 2 mm, 1.5 µm) fitted to a guard column (5 x 2 mm) was used. Mobile phases A and 

B were 0.1% formic acid (aq) and 0.1% formic acid in acetonitrile respectively. The 

gradient elution was developed and optimised to maximise separation, and was as follows: 

98% A (1 min), 98-94% A (1.5 min), 94-70% A (7.5 min), 70% A (9.5 min), 70-40% A (3 

min), 40% A (1 min), 40-2% A (6.5 min) 2% A (2 min), 2-98%A (0.1 min), 98% A (5.9 min) 

at 0.3 mL/min, 30°C and with an injection volume of 5 µL. UV-Vis spectra were recorded 

from 210-498 nm. Data acquisition was carried out using Empower Pro v.2 software. A 

calibration curve, that was constructed from ferulic acid (0.25, 0.5, 1, 5, 10, 20 µg/mL) by 

plotting peak areas against concentration, showed good linearity (r2=0.999). Final phenolic 

concentrations were calculated as ferulic acid equivalents (at 280 nm), corrected to per g 

DM, and were the average of two or four replicates. Compounds occurring exclusively in 

the samples were assigned numbers common to mango and banana. Compounds 

detected in both experimental blanks and samples were ignored. 

 

Tandem mass spectrometry analysis was carried out on a UHPLC-Q-ToF-MS system 

equipped with a Dual AJS ESI interface (Agilent Technologies, Mulgrave, VIC, Australia) in 

negative ion mode and connected to a PDA (UV-Vis spectra from 190-500 nm). 

Chromatographic separation was achieved using a Zorbax C18 Bonus RP column (100 x 

2.1 mm, 1.8 µm) fitted with a compatible guard column (5 x 2.1 mm). A different gradient 

elution from the previous analysis was used to optimise separation of compounds:  99% A 

(2 min), 99-0% A (30 min), 0% A (1 min), 0-99% A (1 min), 99% A (6 min) at 0.3 mL/min, 

30°C and an injection volume of 5 µL. The MS parameters were as follows: 50-1700 m/z 

range, 0 eV collision energy, 4 kV capillary voltage, 200°C source temperature, and 14 

L/min gas flow rate. Data acquisition was carried out using MassHunter Workstation v.6 

software. 

 

Commercial standards of the following analytes were purchased from Sigma-Aldrich 

(NSW, Australia): chlorogenic acid, coumaric acid, caffeic acid, cinnamic acid, quinic acid, 

syringic acid, benzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 4-

hydroxyphenylacetic acid, protocatechuic acid, neochlorogenic acid, 3-(4-
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hydroxyphenyl)propanoic acid, hippuric acid, 3-(3-4-dihydroxyphenyl)propanoic acid, 

mangiferin, epicatechin, quercetin, pyrogallol, kaempferol and ethyl ferulate (>98% purity). 

Their retention times, chemical formulae, molecular masses, m/z values and UV-Vis 

absorbance wavelengths are shown in Table A3.1 (Appendix 3). All solvents used for 

UPLC/UHPLC analyses were HPLC grade (>99%). 

 

4.8.4. Statistical analysis 

The 48 h endpoint samples (n=4 for each fruit) and time interval samples from 2-48 h (n=2 

for each fruit) were analysed for the statistical effects on the polyphenol concentrations of 

substrate, time and the interaction, substrate*time, using SAS (9.3) (SAS Institute, Inc., 

Cary, NC, USA). Group means were analysed using Proc GLM procedure (Tukey-Kramer 

multiple comparison) for individual compounds and the significance of treatment 

differences was set at P<0.05.  

 

4.9. Results and Discussion 

4.9.1. Phenolic compounds in fermented mango and banana 

For analysis and identification of the intact polyphenols and metabolic products of colonic-

microbial degradation, masticated and ‘digested’ mango and banana pulp were incubated 

with fermentation suspensions as a function of time. The supernatants were analysed by 

UPLC with a PDA detector to characterise and quantify the compounds to per g DM of 

starting substrate. Where applicable, further confirmation through the application of 

UHPLC-Q-ToF-MS (via molecular feature extraction, chemical formula and/or extraction of 

specific mass) was used. In addition, compounds detected in the samples that were also 

present in the experimental blanks (basal solution and faecal inoculum) were ignored, 

were ignored, permitting only those compounds specific to the fermentation of the fruit 

residues to be selected for study. 

 

Ten and twelve phenolic compounds (intact compounds and metabolites) were detected in 

banana and mango respectively at 0 h fermentation after the in vivo mastication and in 

vitro ‘digestion’ processes. A representative UPLC-PDA (280 nm) chromatogram of mango 

at 0 h fermentation time is displayed in Fig 4.8, and the extracted chromatograms from 0-

48 h of colonic fermentation for both fruits are illustrated in Fig A3.2 (Appendix 3). The 

identity and characteristics, including retention times, UV-Vis and mass spectral data, of 

these twelve compounds are shown in Table 4.3. In addition, Fig A3.3 details the full UV-

Vis spectra for these twelve compounds. 
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Figure 4.8. UPLC-PDA chromatograms (280 nm) of mango at 0 h of colonic fermentation. 
The chromatograms from 2-48 h are shown in Fig A3.1 (Appendix 3). Information for each 
detected peak is presented in Table 4.3 with common peak numbers used for mango and 
banana. 
 

Table 4.3. Compounds detected in masticated mango and banana samples after 48 h 
microbial fermentation in vitro, and their characterisation based on UV-Vis and mass 
spectral analysis. 

Peak 
no 

Compound Retention 
time (min)1 

Present 
in 

mango 

Present 
in 

banana 

Chemical 
formula 

Molecular 
mass (Da)3 

λmax (nm)4 

1 Quinic acid 1.945   C7H12O6 192.167 215/258 

2 Unidentified 2.211   - - 286/344 

3 Unidentified 2.599   - - 224/288 

4 Epigallocatechin/ 
gallocatechin (1)4 

4.474   C15H14O7 306.267 219/279 

5 4-hydroxyphenylacetic acid 5.074   C8H8O3 152.147 222/271 

6 3-(4-
hydroxyphenyl)propanoic 
acid 

7.068   C9H10O3 166.174 210/302/361 

7 Unidentified 7.557   - - 211/258/290 

8 Chlorogenic acid 7.591   C16H18O9 354.309 222/298/382 

9 Epicatechin 8.271   C15H14O6 290.268 211/280 

10 Unidentified 8.928   - - 222/268/368 

11 Epigallocatechin/ 
gallocatechin (2)5 

9.148   C15H14O7 306.267 219/279 

12 Unidentified 11.222   - - 218/262/351 

13 Hippuric acid2 8.999   C9H9NO3 179.0586 - 
1,4Retention time and UV-Vis absorbance of peaks were obtained from UPLC-PDA chromatograms except 
2hippuric acid, which was extracted from the UHPLC-Q-ToF-MS chromatogram. 3Molecular masses of 
compounds (epicatchin, chlorogenic acid, quinic acid, 3-(4-hydroxyphenyl)propanoic acid and hippuric acid) 
were extracted from the UHPLC-Q-ToF-MS data, while the molecular masses of 4-hydroxyphenylacetic acid 
and epigallocatechin/epicatechin are theoretical masses as reported in Chemspider database. 5Two 
compounds suggestive of epigallocatechin/gallocatechin were detected and are named as 
epigallocatechin/gallocatechin (1) and (2) respectively. 

 

4-Hydroxyphenylacetic acid and epicatechin were detected in both fruits and their 

identities were confirmed by matching against their elution time and UV-Vis spectrum of 

the respective standards (Table 4.3; Table A3.1 in Appendix 3; Fig A3.3). The UV-Vis 
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spectrum of 4-hydroxyphenylacetic acid (peak 5) showed absorbance at 222/275nm and 

eluted at 5.074 min, which matched with the authentic standard (222/274 nm, 5.094 min). 

However, a molecular ion of m/z 151.0462 [M-H]-, which is indicative of 4-

hydroxyphenylacetic acid was not found in the total or extracted ion chromatograms 

despite reducing the collision energy to 0 eV. 

 

The identity of epicatechin (peak 9) with UV-Vis absorbance at 211/280 nm (maximum 

absorbance at 280 nm) and retention time of 8.271 min was confirmed by its respective 

standard (219/279 nm, 8.263 min). Catechins, a class of flavonoids, also known as 

flavanols include monomers such as catechin, epicatechin, gallocatechin and 

epigallocatechins, generally show an intense band ll (240-280 nm) and just a small band l 

(300-550 nm) due to little or no conjugation between the A- and B-rings (Stalikas, 2007). 

Again, a deprotonated ion of m/z 289.0783, which is characteristic of epicatechin 

molecular ion (290.268) analysed in negative electrospray ionisation MS, was not found in 

the samples. Peaks 4 (219/279 nm) and 11 (217/279 nm) are tentatively identified as 

gallocatechin or epigallocatechin, as standards were not available. The UV-Vis spectra of 

these two compounds in the samples are similar to that of epicatechin and catechins, but 

do not have similar retention times to the commercial authentic epicatechin standard. 

Gallocatechin and/or epigallocatechin have been previously reported to comprise the bulk 

of flavonoids in banana pulp extracts (Aurore, Parfait, & Fahrasmane, 2009; Bennett et al., 

2010; de Pascual-Teresa, Santos-Buelga, & Rivas-Gonzalo, 2000; Mendez et al., 2003; 

Someya, Yoshiki, & Okubo, 2002). These flavanols have been also identified in mango but 

have not been quantified. 

 

Chlorogenic acid (peak 8 in Fig 4.8) was identified based on matching the UV-Vis 

spectrum (222/298/382 nm) and m/z of 353.0888 to those of the standard UV-Vis: 

218/241/326 nm and m/z: 353.0882 (Fig 4.9). Quinic acid (peak 1 in Fig 4.8, UV-Vis: 

215/258 nm) was identified via comparison of its UV spectrum to that of the commercial 

authentic standard (215/287 nm), and using the [M-H]- ion at 191.0567 in the mass 

spectrum (ESI negative) of quinic acid (peak 1) (Fig 4.9), which corresponds to the 

molecular mass of 192.0639. Quinic acid has been reported as a hydrolysis product of 

chlorogenic acid (Ludwig et al., 2013). The presence of 3-(4-hydroxyphenyl)propanoic acid 

was confirmed in both fruits by comparing the UV-Vis spectrum of compound 6 in Fig 4.8 

(210/302 nm, 7.068 min) to the that of the authentic standard (222/276 nm, 6.958 min) (Fig 

A4.2), and using the deprotonated ion of m/z 165.0559 in the mass spectrum of both 
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compound 6 and authentic 3-(4-hydroxyphenyl)propanoic acid standard, which 

corresponds to a molecular mass of 166.0629. Compound 13 was detected in mango and 

banana samples only at the 0 h fermentation time. Identification of compound 13 as 

hippuric acid was based on the mass spectrum (from the Q-ToF-MS instrument) containing 

a deprotonated [M-H]- ion (m/z 178.0509) (Fig 4.9) that was also in the mass spectrum of 

the commercial authentic hippuric acid standard (molecular mass: 179.0586). 

 

 
Figure 4.9. ESI-MS spectral identification of the deprotonated ions of (A) 3-(4-
hydroxyphenyl)propanoic acid, (B) quinic acid, (C) chlorogenic acid and (D) hippuric acid. 
The identities of these compounds were confirmed by comparing their mass spectra and 
retention times to respective authentic standards. 
 

4.9.2. Methodological challenges 

The identities of seven compounds remained unelucidated, with their UV-Vis spectral 

characteristics detailed in Table 4.3, and the fermentation kinetics of five of these seven 

compounds displayed in Fig 4.10. These data for compounds 2, 3 and 10 are indicative of 
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the degradation of parent phenolic compounds in the food matrix, which were metabolised 

after 6-10 h of in vitro colonic fermentation, while such data for compounds 7 and 12 

suggest these compounds are metabolites that were simultaneously produced and 

accumulated. The concentration of compound 7, present only in mango, reached a 

maximum (301 μg/g DM) after 4 h of in vitro colonic fermentation, and was followed 

subsequently by a swift decline. Compound 12 reached its maximum concentration of 292 

μg/g DM in mango and 800 μg/g DM in banana after 18 h of in vitro colonic fermentation, 

and then decreased in concentration to <10 μg/g DM after 48 h. 

 

 
Figure 4.10. Time course profiles illustrating the degradation of unidentified individual 
compounds and production of their metabolites (0-48 h) as detected in fermented mango (-

-) and banana (..○..). Data is expressed as mean±standard error of µg/g dry matter of 
ferulic acid equivalents. Quantification was calculated at 280 nm for these compounds. 
Note the different y axis scales for each compound. 
 

UPLC-PDA (280 nm) identification and quantification was chosen for the search for 

phenolic compounds; however, proteins and peptides with aromatic amino acids such as 

tryptophan, tyrosine or phenylalanine absorb at 280, 274 and 257 nm respectively 

(Desbois, Seabrook, & Newman, 2013; Held, 2003; Knapik, Fernandes, de Azevedo, & 

Porto, 2014), while DNA absorbs at 240-310 nm (Stapleton & Walbot, 1994).  This made 

the identification of phenolic compounds difficult to achieve. 
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Compounds 6 (210/302/362 nm) and 12 (213/261/351 nm) absorbed more strongly at 320 

nm (Table 4.3), which is a more selective wavelength for the presence of polyphenol 

aromatic rings, however, unexpectedly, these two compounds did not match in retention 

times and UV-Vis absorption with any of the available authentic standards. These two 

compounds appear to be hydroxycinnamic acids and/or flavones, which tend to have 

stronger UV absorbance in the band l spectrum (320 nm), attributed to the substitution 

pattern and conjugation of the C-ring (Manach et al., 2004; Stalikas, 2007). Ferulic acid, 

caffeic acid, coumaric acid and hydroxybenzoic acid were specifically searched for in this 

set of microbially-fermented fruit substrates using both techniques of UPLC-PDA and 

UHPLC-Q-ToF and via comparison to the standards elution time, UV spectrum and mass 

spectrum, however, these compounds were not found despite having been previously 

reported in ripe banana and mango flesh (Kim, Brecht, & Talcott, 2007; Mattila, Hellstrom, 

& Torronen, 2006; Shahidi & Naczk, 2004). This indicates these compounds are likely to 

have been released during the in vivo mastication and in vitro gastrointestinal digestion 

processes or there may be an increased susceptibility of these compounds to degradation 

or oxidation, and therefore, not present in these fermented fruit residues. 

 

 
Figure 4.11. (A) Total compound chromatogram and (B) UV-Vis chromatogram of mango at 
0 h microbial fermentation in vitro (1-30 min) extracted from UHPLC-Q-ToF-MS. Note the 
different y axis intensities in both chromatograms. 
 

Ideally, compound identification using the total ion current chromatogram (TIC) from 

UPLC-MS and UPLC-MS/MS analysis is desired, but this proved complicated and 

challenging in the present study. In a typical TIC chromatogram of mango residue (Fig 

4.11), there are a very large number of peaks (note the abundance intensity), many more 

than present in the UV chromatogram from the same instrument (Fig 4.11) (the mass 

spectra of compounds are not shown as there are >2000 features). Q-ToF-MS is a highly 

sensitive technique, so there is little doubt that the instrument is also detecting and/or 



 

 

 

 
111 

ionising the trace minerals in solution, vitamin/phosphates in solution, microbial 

metabolites, or other components not explicitly from the target class of phenolic 

compounds or catabolites. There may be more compounds of interest from the TIC 

chromatogram, in addition to the seven identified phenolic compounds, but this requires a 

targeted search for specific compounds, which is time and resource intensive. Currently, 

besides a small class of known phenolic compounds reported in the literature, available 

databases usually favour pharmaceutical drugs, proteins/peptides, nutraceuticals, human 

intestinal transporters and enzymes.  

 

Additionally, thirteen phenolic compounds (pyrogallol, caffeic acid, benzoic acid, cinnamic 

acid, neochlorogenic acid, chlorogenic acid, 4-hydroxyphenylacetic acid, 3-(4-

hydroxyphenyl)propanoic acid, 3-(3-4-dihydroxyphenyl)propanoic acid, syringic acid, ethyl 

ferulate, epicatechin and kaempferol) were selectively detected using UV absorbance at 

280 nm, but each compound produced a mass spectrum with weak ion intensities in the 

mixed standard UPLC runs (Fig A4.4), suggesting that these phenolics do not ionise well 

even in the soft negative ionisation mode, although polyphenol analysis and 

characterisation studies are generally performed in the negative mode (Ajila et al., 2011; 

de Rijke, Zappey, Ariese, Gooijer, & Brinkman, 2003; Mosele et al., 2014; Rechner et al., 

2004), except for anthocyanins, which are carried out in the positive ionisation mode 

(Gonzalez-Barrio, Edwards, & Crozier, 2011).  

 

4.9.3. Biotransformation of intact phenolic compounds to respective metabolites 

The intact parent mango flavonoids and phenolic acids studied were rapidly catabolised 

(78%) in vitro within the first 10 h, while the produced catabolites gradually disappeared 

after 24-48 h (Fig 4.12), except for 3-(4-hydroxyphenyl)propanoic acid, chlorogenic acid 

and epigallocatechin/gallocatechin (2), which were still detected at 48 h (15 μg/g, 32 μg/g 

and 76 μg/g DM). A similar degradation behaviour was observed for banana phenolics with 

a concentration decrease of 72% after 10 h (with similar phenolic compounds to those in 

mango being detected), apart from quinic acid and an unidentified compound (peak 7) that 

were unique to mango. Concomitant with such degradations were the formation and 

accumulation of lower-weight metabolites at 4 h into the colonic-microbial fermentation 

(Fig 4.12), which were followed by a continuing degradation and/or further 

biotransformation of these metabolites to other as yet unidentified catabolites. 
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Figure 4.12. Time course plots of intact phenolic compounds () and derived metabolites (- 
- -) of (A) mango and (B) banana during 48 h microbial fermentation in vitro. Phenolic 
concentrations are expressed as µg/g dry matter of ferulic acid equivalents (quantification 
at 280nm). The sum of intact phenolics include compounds 1-4, 6-10, 12, and the sum of 
phenolic metabolites include compounds 5, 7, 11. Note the different y axis scales for both 
profiles. 
 

The kinetics of chlorogenic acid fermentation showed significant (P<0.0001) degradation 

after 24 h (Fig 4.13), with the first intermediate microbial metabolite derived from the 

hydrolysis of chlorogenic acid was quinic acid, which reached its maximum concentration 

(100 μg/g DM) at 2 h of in vitro colonic fermentation, before degrading completely in the 

next 4 h. The proposed colonic microbial metabolic pathway of chlorogenic acid reported 

by Ludwig, de Pena, Cid and Crozier (2013) (Fig 4.14) involves the cleavage of the ester 

bond between the caffeic acid and quinic acid components of chlorogenic acid, with the 

colonic microbiota being the exclusive site for human metabolism (Plumb et al., 1999). 

Escherichia coli, Bifidobacterium lactis and Lactobacillus gasseri have been shown to be 

capable of this cleavage by expressing cinnamoyl esterase activity (Couteau, McCartney, 

Gibson, Williamson, & Faulds, 2001). The same authors revealed the rapid degradation of 

chlorogenic acid within 3-4 h of human faecal incubation with coffee, and 2 h using 

standard compounds (Gonthier et al., 2006). Caffeic acid, one of the main metabolites 

after colonic fermentation of chlorogenic acid (Ludwig et al., 2013; Parkar, trower, & 

Stevenson, 2013; Rechner et al., 2004; Tomas-Barberan et al., 2014) was not found 

despite a targeted search, which may be due to an increased tendency to degradation or 

oxidation. Free quinic acid was also absent in the Gonthier et al. (2006) study, indicating 

immediate metabolism in a soluble fermentation medium. The slow degradation rate of 

chlorogenic acid in this study demonstrates that intact plant cell walls/structure may be a 

controlling factor to microbial susceptibility, and that future studies of polyphenol 

catabolism should take this into account.  
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Figure 4.13. Fermentation-time profiles of chlorogenic acid () and its metabolites in (A) 
mango and (B) banana during 48 h microbial fermentation in vitro, demonstrating the 
similar degradation patterns through the proposed sequence of chlorogenic acid and 
hydrolysis to quinic acid (x) and dehydroxylation to 3-(4-hydroxyphenyl)propanoic acid (o), 
or decarboxylation and further dehydroxylation to 4-hydroxyphenylacetic acid (∆). Data is 
expressed as mean±standard error. Note the different y axis scales. 
 

The subsequent metabolites detected in the substrate faecal medium are 3-(4-

hydroxyphenyl)propanoic acid and 4-hydroxyphenylacetic acid. 3-(4-

Hydroxyphenyl)propanoic acid is formed from reduction of a double bond in chlorogenic 

acid to caffeic acid or ferulic acid and then dehydroxylation at the C4 position (Fig 4.14). 3-

(4-Hydroxyphenyl)propanoic acid and 4-hydroxyphenylacetic acid have been proposed to 

originate from various precursors such as quercetin, quercetin-3-O-glycosides, 

kaempferol-rutinoside, myricetin and naringenin through ring fission by rat faecal 

microbiota (Serra, Macia, Romero, Ortega, & Motilva, 2012), and by human faecal 

microbiota (Aura et al., 2002; Crozier, Del Rio, & Clifford, 2010; Rechner et al., 2004), and 

from precursors such as flavanols (Aura, 2008; Chen & Sang, 2014; Henning et al., 2013) 

and mangiferin (Bock & Ternes, 2010). Mangiferin and the xanthone glycosides were 

identified in the mango pulp of various cultivars (Berardini et al., 2005b; Daud et al., 2010; 

Saleh & EL Ansari, 1975; Wilkinson et al., 2011), but were not detected in the present 

study, presumably due to very low initial concentrations or losses during the preceding 

mastication and ‘digestion’ processes. Another mango study also found that the 

concentration of mangiferin in the flesh of Kensington Pride mango was below the 

detection limit, and between 0.34% and 0.95% in the peel (Daud et al., 2010; Pierson, 

Monteith, Roberts-Thomson, Dietzgen, & Gidley, 2014). Further, environment factors such 

as growing conditions, ripening stage, and postharvest and storage conditions may 

contribute to phenolic composition variation and thus, inter-fruit variability (Hewavitharana 

et al., 2013a; Manthey & Perkins-Veazie, 2009; Talcott et al., 2005). 
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Figure 4.14. Catabolic pathways for chlorogenic acid microbial degradation in the colon 
(Ludwig et al., 2013). The red boxes represent transformations to identified metabolites 
observed in this study. 
 

3-(4-Hydroxyphenyl)propanoic acid steadily decreased for 24 h, and became significantly 

(P=0.004) very low by 48 h (15 μg/g DM and 11 μg/g DM in mango and banana 

respectively) This finding is similar to that of Rechner et al. (2004), where the 3-(3-

hydroxyphenyl)propanoic acid concentration decreased by only a small amount during 24 

h fermentation. 4-Hydroxyphenylacetic acid was the major in vitro colonic fermentation 

end-product of chlorogenic acid, with a maximum concentration of 898 μg/g DM and 450 

μg/g DM for mango and banana respectively, after 4 h; however, it disappeared after 24 h 

(Fig 4.13). Next, the decline in 3-(4-hydroxyphenyl)propanoic acid was concomitant with 

the swift formation and accumulation of 4-hydroxyphenylacetic acid, which may be 

generated through the decarboxylation and further dehydroxylation of 3-(4-

hydroxyphenyl)propanoic acid (Rechner et al., 2002; Rechner et al., 2001).  

 

Tomas-Barberan et al. (2014) found 3-(3-hydroxyphenyl)propanoic acid as the 

bioconversion end-product in six of nine subjects in an in vitro fermentation study utilising 

human faeces, which did not proceed towards the formation of phenylpropanoic acid, 

unlike in this study, possibly suggesting higher enzymatic activities of decarboxylation and 

dehydroxylation in porcine faeces. Caffeoyl-glycerol metabolites such as caffeoyl-glycerol 
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and 3-(3,4-dihydroxyphenyl)propanoyl-glycerol were described in the same study, for the 

first time as microbial metabolites of chlorogenic acid. The presence of these metabolites 

disclosed a novel degradation pathway where the cyclohexane ring was broken, leaving a 

glycerol residue esterified with caffeic acid, and further degradation of the quinic acid 

residue before the ester link, resulted in the caffeoyl-glycerol residues. Metabolites from 

this pathway, however, were not present in the current set of fermented samples. No 

formation of benzoic acid from the quinic acid component of chlorogenic acid, as 

previously suggested (Indahl & Scheline, 1973), was observed during the time scale of the 

present in vitro colonic fermentation experiment. The presence of quinic acid, 3-(4-

hydroxyphenyl)propanoic acid and 4-hydroxyphenylacetic acid in the fermentation medium 

at 0 h incubation suggests some degree of biotransformation of these metabolites may 

have been initiated during addition of the faecal inoculum at 0 h, which relies on efficient 

inactivation of microbial activity. 

 

Hydroxyphenylacetic acids have also been characterised as specific metabolites during 

the colonic degradation of quercetin and its glycosides via ring fission of the C-ring to 3-(3-

4-dihydroxyphenyl)propanoic acid, subsequent degradation to 3-4-dihydroxyphenylacetic 

acid, and finally dehydroxylation to hydroxyphenylacetic acid and phenylacetic acid 

(Selma, Espin, & Tomas-Barberan, 2009; Serra et al., 2012). Quercetin has commonly 

been reported as the main flavonol in mango (Gonzalez-Aguilar et al., 2001; Masibo & He, 

2008; Robles-Sanchez et al., 2009a; Robles-Sanchez et al., 2009b; Schieber, Ullrich, & 

Carle, 2000; Shivashankara et al., 2004);  however, quercetin and dihydroxyphenylacetic 

acids were not found in the substrate fermentation medium based on either UV or MS 

detection, presumably due to active degradation or losses occurring in the earlier digestive 

steps, similarly to chlorogenic acid and its intermediate catabolites. Quercetin aglycone 

and glycosides are easily hydrolysed within 20 min and 4 h respectively, and are described 

as being highly bioavailable in the small intestine (Boyer, Brown, & Liu, 2004; Crespy et 

al., 2002; Hollman et al., 1997c; Hollman, vanTrijp, Mengelers, deVries, & Katan, 1997b; 

Manach et al., 2004). 4-Hydroxyphenylacetic acid was discussed previously as being a 

metabolite of chlorogenic acid, thus, the degradation metabolites of 

hydroxyphenylpropanoic acids and hydroxyphenylacetic acids can be classified as being 

non-specific metabolites formed from flavanols and hydroxycinnamic acids, due to their 

structural properties. 
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Figure 4.15. Fermentation-time profiles of epicatechin () in (A) mango and (B) banana 
during 48 h microbial fermentation in vitro, and derivatives of 
epigallocatechin/gallocatechin (1) () and (2) (∆), demonstrating the similar patterns 
through the degradation of epicatechin and epigallocatechin/gallocatechin (1), and 
formation and accumulation of epigallocatechin/gallocatechin (2). Data is expressed as 
mean±standard error. Note the different y axis scales. 
 

With regards to the colonic metabolism of epicatechin, the kinetic response is shown in Fig 

4.15. Degradation of epicatechin was complete within 8 h of fermentation, indicating high 

microbial activity for this flavanol. As peaks 4 and 11 were tentatively assigned as 

epigallocatechin, gallocatechin or catechin monomers, they are broadly termed as 

catechin derivatives (1) and (2) in this discussion. The main intact phenolic compound in 

mango and banana was the catechin derivative (1), with the highest starting 

concentrations occurring at time 0 h of in vitro colonic fermentation (2023 μg/g DM and 

898 μg/g DM respectively); this compound was then rapidly metabolised within 8 h. 

Previous studies of the incubation of flavanols with pig caecal microbiota similarly showed 

metabolism within 4-8 h (Hein, Rose, Van't Slot, Friedrich, & Humpf, 2008; Van't Slot & 

Humpf, 2009). Degradation of epicatechin and the catechin derivative (1) occurred 

simultaneously, in parallel with a progressive 4 h increase in the concentration of the 

catechin derivative (2), which then gradually declined in concentration until the end of the 

48 h colonic fermentation. Hippuric acid, as detected by the Q-ToF-MS, was found to be 

present in mango and banana at low levels only at 0 h, and was proposed to originate from 

4-hydroxybenzoic acid (Fig 4.16) (Gao et al., 2006; Roowi et al., 2010). In addition, there 

are pathways to hippuric acid from benzoic acid, quinic acid (Clifford, 2000), tryptophan, 

tyrosine and phenylalanine (Bridges, French, Smith, & Williams, 1970; Grumer, 1961; Self, 

Brown, & Price, 1960). Hippuric acid is well recognised as a urinary excretion metabolite 
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(Gonthier, Verny, Besson, Remesy, & Scalbert, 2003; Mulder, Rietveld, & van Amelsvoort, 

2005; Rechner et al., 2002; Van Dorsten, Daykin, Mulder, & Van Duynhoven, 2006). 

 

 
Figure 4.16. Proposed metabolic pathways for epicatechin and catechin (flavanols). Single 
arrows indicate known conversions, double arrows indicate unknown conversions, the 
dotted arrow between pyrogallol and pyrocatechol indicates this is a minor conversion 
(Roowi et al., 2010). The red boxes represent transformations to identified metabolites 
observed in this study. 
 

Studies of microbial metabolism of dietary catechins and procyanidins showed that 

benzoic, phenylacetic, phenylpropanoic, phenylvaleric and phenyllactic acid derivatives 

and phloroglucinol were produced with different hydroxylation patterns (Groenewoud & 

Hundt, 1986; Rios et al., 2002; Tzounis et al., 2008). However, phenylvaleric acids or 

valerolactones were not detected in the present study. Interestingly, the formation of these 

metabolites from (+)-catechin required an initial conversion to (+)-epicatechin, which has 

been linked to the dramatic change in the growth of distinct microbiota populations in the 

presence (+)-epicatechin (Tzounis et al., 2008). 
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4.10. Concluding Remarks 

This study of colonic-microbial biotransformation has demonstrated an intensive metabolic 

activity of the faecal microbiota, including the disintegration of banana and mango fruit cell 

wall structures (as shown in Chapter 4 Part A), and the subsequent release and 

metabolism of phenolic compounds during the in vitro fermentation process. UPLC-PDA 

and UHPLC-MS analyses revealed degradation of intact polyphenols (chlorogenic acid 

and epicatechin), and the formation and accumulation of the intermediate catabolites, 

quinic acid, 3-(4-hydroxyphenyl)acetic acid, 4-hydroxyphenylacetic acid, hippuric acid and 

two catechin derivatives. Q-ToF-MS may be effective in identifying known compounds, 

given sufficient time to elucidate the mass, formula, and structure, and the availability of a 

broad range of authentic standard compounds but this technique has also proved 

challenging with cost and time constraints. Continuation of this study is warranted with a 

further investigation of studying the unidentified metabolites, including non-phenolic-

associated compounds, through the use of MS/MS fragmentation or selected reaction 

monitoring mode (SRM) of individual compounds, as approached in some reported studies 

(de Oliveira et al., 2013; Jenner, Rafter, & Halliwell, 2005; Mosele et al., 2014). Future 

work could also focus on preserving or increasing the longevity of the compounds of 

interest; there may be degradation of the phenolic compounds in the samples, given that 

the MS-based analysis was a latecomer to proceedings and some expected signals were 

not observed. Considering that some of the polyphenols present in mango and banana 

may be non-extractable, characterisation and identification of these compounds may be 

improved via the application of chemical depolymerisation techniques, i.e. 

phloroglucinolysis and butanolysis. The present study has shown that unabsorbed 

polyphenols are likely to be transported to the colon, because they were not released from 

the food matrix during the use of the in vitro digestion model for the small intestine 

digestion. Exposure (upon release from cell walls) to faecal microbiota and/or their 

microbial enzymes capable of metabolic activities (e.g. ring fission, dehydroxylation, 

decarboxylation and hydrolysis) beyond those of human endogenous enzymes resulted in 

the production of lower molecular-weight metabolites. This will contribute to a better 

understanding of the fruit matrix-phenolic-microbiota interactions, and subsequently the 

physiological impact on gut health. The site of maximum fermentation activity in vivo may 

be influenced by passage kinetics of the digesta with changes to the proportions of dietary 

components and this is investigated in Chapter 5 Part A. 
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Chapter 5. Passage of mango and pectin, and polyphenol metabolism in the 1 

gastrointestinal tract of pigs – a human model 2 

5.1. Introduction 3 

The total nutritive value of a meal is influenced by its components and the processing 4 

steps that the components have undergone before they are consumed (Schwizer et al., 5 

1997; Siddons, Paradine, Beever, & Cornell, 1985), physiological processes including 6 

mastication (Bach Knudsen, 2001), acid hydrolysis in the stomach (Näslund, Gutniak, 7 

Skogar, Rössner, & Hellström, 1998), enzymatic hydrolysis in the small intestinal lumen 8 

(Souza da Silva, van den Borne, Gerrits, Kemp, & Bolhuis, 2012), and microbial 9 

fermentation along the large intestine (Jian, Vigneron, Najean, & Bernier, 1982). These 10 

physiological processes are heavily dependent on the duration that nutrients spend in 11 

each compartment of the gastrointestinal tract. 12 

 13 

There have been human feeding studies where human volunteers were fed radioactive 14 

tracers and the passage of these tracers was recorded as they progressed along the 15 

gastrointestinal tract (Brunner et al., 2003; Feldman, Smith, & Simon, 1984; Weaver et al., 16 

2014). More recently, magnetic resonance imaging has been used to investigate the 17 

passage of gastrointestinal tract contents (Evans et al., 1993; Gamarra et al., 2010; Martin, 18 

Danrad, Herrmann, Semelka, & Hussain, 2005). Despite these current techniques, they 19 

remain costly and are difficult to apply to large-scale trials. Although there are inherent 20 

differences between humans and pigs, including feeding quantity, length and size of the 21 

large intestine, and gastric luminal environment, pigs have frequently been used as a 22 

human model to determine the movement of gastrointestinal tract contents (Guilloteau, 23 

Zabielski, Hammon, & Metges, 2010). 24 

 25 

The aims of the current study were to quantify the passage kinetics along the digestive 26 

tract (from the stomach to the distal colon) in vivo, and the fractional outflow rates from the 27 

stomach and small intestine. Since insoluble dietary fibres have previously been shown to 28 

influence passage dynamics, diets containing a mango ingredient, and the main soluble 29 

dietary fibre (pectin) in both banana and mango were used to investigate the influence on 30 

these parameters (Chapter 5 Part A). The next aim was to study the release of 31 

polyphenols from the mango pulp ingredient and their biotransformation to respective 32 

catabolites in defined sites of the entire gastrointestinal tract in ‘real time’ (Chapter 5 Part 33 

B). 34 

 35 

36 
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Part A. Passage of gastrointestinal contents in grower pigs as affected by dietary 1 

components - mango and pectin 2 

5.2. Introduction to Part A 3 

It has been shown previously that dietary fibres have the ability to alter the retention time 4 

of nutrients in each gastrointestinal tract compartment. Generally, there has been an 5 

association between a reduced rate of gastric emptying and delayed nutrient absorption. 6 

This, in turn, then attenuates post-prandial glucose and insulin responses (Miao et al., 7 

2014), and prolongs feelings of satiety (Pond, Ellis, James, & Deswysen, 1985). Several 8 

studies have suggested that soluble dietary fibres would increase the viscosity of the liquid 9 

phase of gastric contents, which will lead to a significantly longer stomach retention time 10 

(Bach Knudsen, 2001; Hartnell & Satter, 1979; McIntyre, Gibson, & Young, 1993; Rainbird 11 

& Low, 1986). In the small intestine, soluble dietary fibre is thought to primarily interfere 12 

with digestion and absorption of nutrients, yet few studies have referred to changes in 13 

passage rates.  14 

 15 

Due to practical difficulties in collecting small amounts of intestinal digesta from numerous 16 

sites between the duodenum and ileum, only a limited number of studies have investigated 17 

the rate of passage along the length of the small intestine. These studies have relied on 18 

the insertion of one or two cannulas into specific regions, usually the duodenum or ileum 19 

(Gidenne, 1992). The effects of insoluble dietary fibres in the large intestine have been 20 

extensively studied (Ehle, Jeraci, Robertson, & Van Soest, 1982; Hendriks, van Baal, & 21 

Bosch, 2012; Owusu-Asiedu et al., 2006), with the conclusion that insoluble dietary fibre 22 

promoted large intestinal passage due to increased bulk, and the retention of water by 23 

digesta.However, the effects of soluble dietary fibre either isolated or as a component of 24 

food, on small intestinal rate of passage remain unclear.  25 

 26 

The feeding of dietary markers to investigate gastrointestinal tract passage is a useful 27 

approach. From reviews of a variety of markers, a summary of ideal digesta marker criteria 28 

is as follows: 1) the marker must be strictly non-absorbable, (2) the marker must be 29 

physically similar to or intimately associated with the material it is to mark, and 3) its 30 

method of estimation in digesta samples must be specific and sensitive, and the marker 31 

must not interfere with other analyses. The most commonly used method for measuring 32 

digesta flow involves administration of markers at a constant rate, either in the diet or by 33 

infusion at a point proximal to the points at which flow is to be measured, followed by 34 

sampling at those points, once equilibrium (steady-state) conditions have been achieved. 35 
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Steady-state conditions exist when the marker pools and flows that are proximal to the 1 

sampling points are constant, and are reflected as constant marker concentrations in the 2 

samples when the animal is fed continuously (Faichney, 1975), or at regular short 3 

intervals, or in a repeating pattern of concentrations related to feeding and/or marker 4 

dosing patterns (Faichney, 1980). The form of the markers (e.g. as oxides or chlorides, 5 

inert metals) makes them indigestible to mammals and often tightly bound to plant 6 

material, which are therefore expected to flow through the gastrointestinal tract in close 7 

association with digesta. Such an association could be desirable in reducing variation in 8 

faecal marker concentration attributable to differential flow of feed residue relative to flow 9 

of the marker, from various gastrointestinal tract compartments (Kotb & Luckey, 1972). 10 

 11 

5.3. Materials and Methods 12 

5.3.1. Pigs, diets, experimental design, housing and feeding 13 

The experiment was approved by The University of Queensland Animal Ethics Committee 14 

(Ethical Clearance: CNAFS/179/11/CSIRO). Thirty Large White male pigs, obtained from 15 

The University of Queensland Piggery, Gatton, QLD, Australia, were randomly distributed 16 

into three groups of ten pigs each. Each group was assigned to one of three experimental 17 

diets shown in Table 5.1. The control diet contained wheat starch as the major source of 18 

carbohydrate, while in the other two diets, dried mango powder or purified apple pectin 19 

was included at the expense of wheat starch. The mango diet contained 15% dried mango 20 

puree powder, a component of which is pectin (10.7%); the addition of 15% dried mango 21 

powder in the mango diet is qpproximately equivalent to 0.81 kg of fresh mango puree per 22 

kg of dried material consumed. This mango powder was sourced from Nutradry (Hendra, 23 

QLD, Australia). The pectin diet contained 10% purified apple pectin sourced from 24 

Hawkins Watts Pty Ltd. (Mulgrave, VIC, Australia). Edible portions (pulp) of mango were 25 

used in the production of the Nutradry mango powder and as a commercial source of 26 

mango pectin was not available, the common commercial source of purified pectin 27 

extracted from apple pomace was selected over citrus peels. The selected apple pectin is 28 

a high methoxyl pectin with a degree of esterification (DE) of 59-64%, which is similar to 29 

published DE values of apple pomace of 58-62% (Constenla, Ponce, & Lozano, 2002; 30 

Garna et al., 2007) and mango pulp of 58-70% (Saeed, El Tinay, & Khattab, 1975). Pectin 31 

comprises the major fraction of soluble dietary fibre in both mango and apple pulp 32 

(Fernandez, 2001; Goni, Torre, & Saura-Calixto, 1989; Gullon, Falque, Alonso, & Parajo, 33 

2007; Thompson, 2010). Protein, fat, fibre, vitamins, minerals and energy were kept 34 

constant and isocaloric between diets (Table 5.2). The pigs were housed individually on 35 
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Table 5.1. Chemical composition of the experiments diets (g/100 g). 
Ingredients Control Pectin Mango 

Whey protein concentrate 
Calcium caseinate 
Nutradry mango powder 
Pectin Classic AF 401 85% 
Arbocell1 
Celite2 
Dried whole egg powder 
Palm oil 
Sunflower oil 
Wheat starch 
Limestone- 1mm + 250 um dust free 
Dicalphos3 
Salt 
Sodium bicarbonate 
Potassium chloride 
Potassium carbonate 
Causmag (Mgo) 4 
AN GSH-PX selenium yeast 0.2% Se 
Choline chloride 60% 
DL methionine 
Lysine HCl 
L-Threonine 
L-Tryptophan 
Pig Mineral 1 (Applied Nutrition Pty Ltd*) 
Pig Vitamin 1 (Applied Nutrition Pty Ltd*) 

3.000 
12.985 
0.000 
0.000 
6.000 
26.46 
2.000 
3.145 
0.791 
64.907 
2.096 
1.443 
0.000 
0.712 
0.156 
0.724 
0.830 
0.011 
0.045 
0.210 
0.137 
0.725 
0.043 
0.080 
0.050 

3.000 
12.985 
0.000 
11.765 
6.000 
24.88 
2.000 
3.191 
0.798 
54.867 
1.321 
1.443 
0.001 
0.308 
0.448 
0.000 
0.661 
0.011 
0.045 
0.210 
0.137 
0.725 
0.043 
0.080 
0.050 

3.000 
12.895 
15.000 
0.000 
6.000 
24.44 
2.000 
3.007 
0.798 
52.478 
0.793 
1.440 
0.199 
0.243 
0.195 
0.000 
0.649 
0.011 
0.046 
0.210 
0.137 
0.725 
0.043 
0.080 
0.050 

1Arbocel was used as a source of cellulose (fibres). 2Celite (or diatomaceous earth) was measured as acid 
insoluble ash. 3Dicalphos was used as a calcium supplement. 4Causmag (magnesium oxide) was used as a 
magnesium supplement. *Applied Nutrition Pty Ltd, Alexandra Hills, QLD, Australia. All ingredients were 
sourced locally in Queensland. 
 

Table 5.2. Calculated nutritional composition of the experimental diets (%). 
Ingredients Control Pectin Mango 

Volume 
Dry matter 
Protein 
Crude fibre1 
Pectin 
Ash 
Digestible energy (mega joules)2 
Arginine 
Histidine 
Isoleucine 
Lysine 
Methione 
Threonine 
Tryptophan 
Valine 
Ailyspig 
Calcium 
Phosphorus 
Av_phosphorous 
Sodium 
Potassium 
Chloride 
Fat 
Saturated fat 
Monounsaturated fatty acids (MUFA) 
Polyunsaturated fatty acids (PUFA) 

100.00 
91.723 
16.019 
4.411 
0.510 
7.440 
15.150 
0.499 
0.414 
0.667 
1.095 
0.571 
0.764 
0.219 
0.841 
1.061 
1.300 
0.361 
0.300 
0.210 
0.300 
0.112 
5.500 
2.030 
0.009 
0.812 

100.00 
91.404 
15.978 
10.800 
6.929 
6.660 
15.150 
0.499 
0.424 
0.667 
1.095 
0.571 
0.764 
0.219 
0.841 
1.061 
1.076 
0.361 
0.300 
0.160 
0.280 
0.250 
5.500 
2.053 
0.010 
0.821 

100.00 
92.063 
16.382 
5.558 
1.658 
6.120 
15.150 
0.506 
0.417 
0.673 
1.103 
0.574 
0.770 
0.222 
0.848 
1.061 
0.833 
0.362 
0.300 
0.160 
0.280 
0.250 
5.500 
2.010 
0.009 
0.804 

1Crude fibre is comprised primarily of cellulose (from Arbocell) and pectin. 2Digestible energy was measured 
as mega joules. 



 

 

 123 

raised floors in 1.8 m2 pens. Individual housing was realised by placing stainless steel 1 

pens side-by-side with a feeding trough at one end. Pigs could see and hear each other 2 

but were restricted from touching by the pens. Lights were on from 0600 to 1800. The 3 

shed was mechanically ventilated. Post-weaning, the pigs were fed a commercial diet 4 

before adaption. The pigs were adapted to their allocated experimental diets by gradually 5 

changing the ratio of commercial diet to experimental diet over a one-week period, i.e. the 6 

pigs were fed 100% commercial diet on day 1 of the changeover week, 75% commercial 7 

diet to 25% experimental diet on days 2 and 3, then 50% commercial diet to 50% 8 

experimental diet on days 4 and 5, 25% commercial diet to 75% experimental diet on days 9 

6 and 7, and finally 100% of the experimental diet on day 8 and thereafter for 21 days prior 10 

to slaughter. Pigs were weighed each week and fed individually according to their weight 11 

at 2.5 times the metabolisable energy requirements for maintenance. The average weight 12 

of the pigs at sampling was 54.6 ± 3.2 kg. Blood was collected from the pigs prior to the 13 

diet changeover week, and during sample collection at the end of three weeks on the 14 

experimental diets, but no pigs showed any signs of disease. The diets were fed as a 15 

mash twice daily at 0800 and 1600, and allowed ad libitum access to water. 16 

 17 

5.3.2. Dietary markers  18 

Gastrointestinal contents have been widely reported to consist of a fluid phase and 19 

heterogeneous (particulate) solid phase with differential flow rates (Johansen, Bach 20 

Knudsen, Sandstrom, & Skjoth, 1996; Lentle & Janssen, 2011). In the current study, the 21 

fluid phase was a result of ingested water (ad libitum) and gastrointestinal secretions, 22 

while the heterogeneous solid phase was primarily made up of varying particles sizes of 23 

feed ingredients and boluses formed on hydration within the digestive tract. Therefore, 24 

indigestible solid and liquid phase markers that associate and distribute exclusively 25 

throughout each phase were incorporated into the experimental diets to measure the flow 26 

rate of digesta as two independent phases in various gastrointestinal sites. Solid phase 27 

markers adsorb onto particles, which may be hydrolysed by digestive enzymes and when 28 

completely hydrolysed, attach onto adjacent undigested particles (Hartnell & Satter, 1979). 29 

The dietary markers were categorised as constant and pulse dose markers. 30 

 31 

Constant feed markers 32 

Chromium chloride (CrCl3) (198 mg/kg DM) and Celite (measured as acid-insoluble ash 33 

(AIA)) (25-26 g/kg DM) were constant (solid) markers mixed with the dry diet ingredients 34 

and fed daily to the pigs. This feeding regime was designed to mimic a steady state 35 
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infusion, which allowed the recovery of chromium (Cr) and AIA to calculate retention time, 1 

transit time and rate of passage of digesta.  2 

 3 

Pulse dose markers  4 

Cerium chloride (CeCl3), ytterbium chloride (YbCl3) and lanthanum chloride (LaCl3) were 5 

selected as pulse dose (solid) markers, while cobalt-EDTA (Co-EDTA) was selected as a 6 

pulse dose (liquid) marker. CeCl3, YbCl3 and LaCl3 have a strong affinity for small 7 

particulates and when fed at known time intervals, can provide insight into the passage of 8 

undigested solid digesta (Cuddleford, Pearson, Archibald, & Muirhead, 1995; Miyaji et al., 9 

2008; Pagan, Harris, Brewster-Barnes, Duren, & Jackson, 1998; Pearson, Archibald, & 10 

Muirhead, 2001; Pond et al., 1985; Rosenfeld, Austbo, & Volden, 2006; Uden, Colucci, & 11 

Van Soest, 1980). At 6 h prior to euthanasia, the pigs were fed a portion of the diet (20%) 12 

dosed with CeCl3 (5.3 mg/kg DM) and at 4 h prior to euthanasia, the pigs were fed another 13 

20% of the diet dosed with YbCl3 (6.6 mg/kg DM). Lastly, At 2 h prior to euthanasia, the 14 

pigs were 20% of the diet dosed with LaCl3 (5 mg/kg DM) and Co-EDTA (7.6 mg/kg DM). 15 

 16 

5.3.3. Sampling 17 

Pigs were anesthetised 2 h postprandially (Zhang et al., submitted 2014). Pigs were laid 18 

dorsally on an operating table, intubated and their blood levels were monitored for CO2 19 

and O2. The abdominal cavity was opened by midline laparotomy and the digestive tract 20 

ligated to prevent digesta flow between gastrointestinal tract sections. Digesta was 21 

collected from nine sites along the gastrointestinal tract- stomach, small intestine, caecum 22 

and colon by gentle squeezing (Fig 5.1).  23 

 24 
Figure 5.1. Sampling sites of the pig gastrointestinal tract consisting of the stomach, small 25 

intestine (split into four sections), caecum and colon (split into three sections). SI: small 26 

intestine, PC: proximal colon, MC: mid colon, DC: distal colon. 27 

 28 

The small intestine was split into four sections (SI1-4): SI1 corresponded to the duodenum 29 

and the first part of the jejunum, comprising the first 2 m of tract after the pyloric sphincter, 30 

SI4 corresponded roughly to the terminal ileum and consisted of the last 1 m, while the 31 

remaining small intestinal tract (corresponding to the rest of the jejunum) was split into 32 
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equal lengths labelled SI2 and SI3 (~4 m each). The colon was divided into three sections 1 

based on equal lengths into the proximal colon (PC), mid colon (MC) and distal colon (DC) 2 

(~0.88 m each). Each section was weighed before and after careful removal of the 3 

contents, the lengths were recorded and the pH measured, immediately before digesta 4 

samples were frozen at -20°C. 5 

 6 

5.3.4. Chemical analyses 7 

5.3.4.1. Dry matter 8 

Dry matter (DM) was determined by drying to constant weight at 105oC (ISO standard 9 

6496:1999) (International Organisation for Standardisation, 1978). 10 

 11 

5.3.4.2. Water holding capacity (WHC) 12 

Water holding capacity (WHC) of the diets was measured by centrifugation method 13 

(Stephen & Cummings, 1979). Samples (10 g) was weighed, added to 35 mL distilled 14 

water and mixed in a water bath at 250 rpm at 37oC for 24 h, followed by centrifugation at 15 

4000 g (Avant®JE centrifuge, JA14 rotor) for 30 min. The supernatant was removed and 16 

the tubes were kept upside down for 3 min to remove all the liquid. The swollen sample 17 

weights were measured, and water binding capacity described in g of water absorbed per 18 

g of dried diet weight. 19 

 20 

5.3.4.3. Acid insoluble ash (AIA) 21 

Analysis of AIA content in the experimental diets and digesta was adapted from Van 22 

Keulen and Young (1977). Samples (~100 mg AIA) were weighed into a pre-weighed 23 

sintered-glass crucible (Pyrex, porosity 4), dried at 105oC for 24 h and re-weighed. The 24 

samples were then ashed at 500oC for 6 h, heated to 100oC with 4 M hydrochloric acid for 25 

30 min and thoroughly washed with reverse-osmosis (RO) water. The processes of drying, 26 

ashing, boiling and washing were repeated until the ash appeared white.  27 

 28 

5.3.4.4. Mineral (markers) content 29 

The content of markers- CrCl3, CeCl3, YbCl3, LaCl3 and Co-EDTA in the experimental diets 30 

and digesta was measured as individual mineral- Cr, Ce, Yb, La and Co content. This was 31 

determined by digesting 300 mg of dried sample in 6 mL nitric acid and 2 mL perchloric 32 

acid followed by the addition of RO water to 20 mL total volume. The digested samples 33 

were analysed using an inductively coupled plasma atomic emission spectrometer 34 

(Optima7300 DV, Perkin Elmer; Wellesley, MA, USA) (Isherwood, 2014). 35 
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5.3.5. Terminology and calculations 1 

Terminology used in this study is defined here to avoid confusion from common terms 2 

used by other authors, for example, (mean) retention time or passage rate are often 3 

defined or interpreted differently. In this study, retention time is defined as the average 4 

time (in hours) digesta components are retained in a mixing pool compartment- i.e. 5 

stomach and caecum, which slowly releases its contents; mixing pool refers to the mass, 6 

weight or volume of contents (Mertens, 2005). Transit time is defined as the time (in hours) 7 

the digesta takes to travel through a particular tubular section of the small intestine (SI1-4) 8 

and colon (PC-DC) (Faichney, 2005), where migrating myoelectrical complexes occur due 9 

to segmentation motility from the generation of electrical activity from the gastro-duodenal 10 

junction, which was first discovered by Szurszewski (1969). Calculation of retention and 11 

transit times were applied to all markers (Cr, AIA, Ce, Yb, La and Co). Digesta flow from 12 

the ileum to caecum and proximal colon is intermittent, and can be followed by periods of 13 

quiescence due to both peristaltic and anti-peristaltic contractions that result in the digesta 14 

being mixed and moved towards the DC (Szurszewski, 1969). Retention time (RT) and 15 

transit time (RT), in hours, are calculated from Eq. (1) (Lascano & Quiroz, 1992): 16 

RT or TT = FD (Ms / MD)                                                    (1) 17 

 18 

where FD is feed hours, which is the time period from when the pigs were fed at 0800 the 19 

day before, to time of anesthesia or slaughter. Ms is the concentration of marker (mg or g) 20 

determined in each gastrointestinal tract section and MD is the total amount of marker (mg 21 

or g) added to the diets. The marker concentration was corrected for total % recovered in 22 

the entire digestive tract, rather than the amount of marker offered to the pigs (Fig 5.2). 23 

Assuming steady-state conditions, the passage rate (in m/h) can be calculated using the 24 

constant feed markers, Cr and AIA. Passage rate (PR) is a measure of digesta flow 25 

through a known length of a gastrointestinal tract section per unit time, and was calculated 26 

from Eq. (2) as the inverse of transit time (Letourneau-Montminy et al., 2011): 27 

PR = L x (1 / TT)                  (2) 28 

 29 

where L is the length (m) measured for each site (see section 5.2.3. Sampling).  30 

 31 

Fractional outflow rates were calculated for the stomach and (combined) small intestinal 32 

compartments using the pulse dose (solid) markers (Ce, Yb and La) (Table A4.1, 33 

Appendix 4). The post marker dose at 0 h refers to the averaged feeding dose (mg) of Ce, 34 

Yb and La fed to the pigs. The post marker feeding dose (mg) for Ce, Yb and La has been 35 
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set to 6 h, 4 h and 2 h respectively, and the pool size at these time intervals refers to the 1 

(normalised) quantity of Ce, Yb and La recovered in the digesta of the stomach and small 2 

intestine. Influx into the stomach has been set to 0 mg, assuming the pulse dose markers 3 

instantaneously end up in the stomach after oral ingestion. The stomach outflow rate for 4 

each 2 h time window was calculated as the difference in the pool size at 0 h and at 2 h, 5 

and similarly for 4 h and 6 h, for example in Eq. (3): 6 

Stomach outflow rate = pool size at 0 h – 2 h             (3) 7 

 8 

where the stomach outflow rate (mg/2 h) equals influx into the small intestine. The small 9 

intestinal outflow rate into the colon was subsequently calculated as Eq. (4): 10 

Small intestine outflow rate = influx – (pool size at 2 h – 0 h)            (4) 11 

 12 

In addition, Eq. (4) was also applied to the flow rates at 4 h and 6 h. A graphical 13 

representative of these flow rates in mg/h is shown in Fig 5.7. Fractional outflow rates 14 

were not calculated for the colon compartment as these pulse dose markers have not 15 

reached the colon within 2 h after the last marker feeding dose. 16 

 17 

5.3.6. Statistical Analysis 18 

The experimental unit for all parameters was a group of thirty pigs. DM, pH, % recovery, 19 

retention time, transit time and passage rate were analysed by mixed model analysis using 20 

Proc Mixed in SAS 9.3 (SAS Institute, Inc., Cary, NC, USA). The effects of Diet, 21 

Gastrointestinal tract site and the interaction of Diet*Gastrointestinal tract site were 22 

determined by the slice statement using the same model. Group means were analysed 23 

using Proc GLM and the significance of treatment differences was set at P<0.05.  24 

 25 

5.4. Results 26 

5.4.1. Digesta dry matter is lower in mango- and pectin-fed pigs 27 

The control diet contained wheat starch as the major source of carbohydrate while in the 28 

other diets, dried mango powder and purified apple pectin were included at the expense of 29 

some of the wheat starch. Digesta DM was influenced by ingestion of soluble fibre (pectin) 30 

and mango in the diet, where the DM digesta (%) in these diets were significantly lower 31 

(P<0.0001) than in the control diet (mango < pectin < control). Digesta DM significantly 32 

decreased (P<0.05) during transit from the stomach to small intestine, and increased 33 

again in the colon (Fig 5.2A, Table 5.3). The water holding capacities of the dry diets were 34 

determined to be 0.49 ± 0.01, 0.40 ± 0.01 and 1.24 ± 0.05 (g of water/ g of dried diet) for 35 
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the control, mango and pectin diets respectively, suggesting that the pectin diet was able 1 

to retain significantly (P<0.05) more water than the control and mango diets.  2 

 3 

5.4.2. Digesta pH along the gastrointestinal tract 4 

Digesta pH was lowest (~5) in the stomach and gradually increased to 7.4 in the terminal 5 

ileum (SI4) (Fig 5.2B). The sharp increase in duodenal (SI1) pH is explained by secretion 6 

of bicarbonate (Grendell, 2014). In the caecum, the pH dropped to 6.7 and increased 7 

again to pH 8 in the DC, similarly as observed by Fallingborg (1999) due to an excess of 8 

rapid fermentation of carbohydrates supplied from the caecum, overwhelming the  9 

buffering capacity (Van Soest, 1994).   10 

 11 

Table 5.3. Digesta dry matter (%) in various gastrointestinal tract sites of pigs fed the 12 

control, 15% mango or 10% pectin diets. 13 
GIT site n* Diets Probability of mixed effects 

  Control Mango Pectin Diet GIT Diet x GIT 

STO 10 31.4±1.4 23.8±1.4 24.4±1.4 

<0.0001 <0.0001 

0.0008 

SI1 10 8.6±1.7 8.1±1.7 12.1±1.7 0.208 

SI2 10 12.6±0.7 11.9±0.7 10.9±0.7 0.226 

SI3 10 21.1±0.6 17.9±0.6 13.5±0.6 <0.0001 

SI4 10 21.3±0.9 15.9±1.0 15.7±0.9 0.0003 

CAE 10 32.4±3.3 16.6±3.3 23.5±3.3 0.009 

PC 10 26.4±0.7 18.9±0.7 21.4±0.7 <0.0001 

MC 10 30.3±0.9 20.8±0.9 21.3±0.9 <0.0001 

DC 10 42.3±1.2 23.5±1.2 24.0±1.2 <0.0001 

GIT: gastrointestinal tract, STO: stomach, SI: small intestine, CAE: caecum, PC: proximal colon, MC: mid 14 
colon, DC: distal colon. Data is expressed as mean±standard error. *10 pigs per diet per GIT site. 15 

 16 

 17 
Figure 5.2. Digesta (A) dry matter (%) and (B) pH along the gastrointestinal tract of pigs 18 

fed the control (☐), 15% mango () or 10% pectin () diets. Data is expressed as 19 

mean±standard error. STO: stomach, SI: small intestine, CAE: caecum, PC: proximal 20 

colon, MC: mid colon, DC: distal colon. 21 
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 1 
Figure 5.3. Distribution of constant feed markers (A) acid insoluble ash (AIA) and (B) 2 

chromium (Cr) recovered in the gastrointestinal tract of pigs fed the control, 15% mango 3 

() or 10% pectin () diets. Data is expressed as mean±standard error. STO: stomach, 4 

SI: small intestine, CAE: caecum, PC: proximal colon, MC: mid colon, DC: distal colon. 5 

 6 

 7 
Figure 5.4. Distribution of pulse dose markers (A) cerium (Ce), (B), ytterbium (Yb), (C) 8 

lanthanum (La) and (D) cobalt (Co) recovered in the gastrointestinal tract of pigs fed the 9 

control (☐), 15% mango () or 10% pectin () diets. Pulse dose (solid) markers were 10 

added to the diets at various time intervals before anaesthesia (0 h): Ce: -6 h; Yb: -4 h; La: 11 

-2 h, and (liquid) marker: Co: -2 h. Any significant (P<0.05) significant interactions between 12 

diet and gastrointestinal tract site (P<0.05) are marked by an asterisk (*). Data is 13 

expressed as mean±standard error. STO: stomach, SI: small intestine, CAE: caecum, PC: 14 

proximal colon, MC: mid colon, DC: distal colon. 15 
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5.4.3. % Marker recovery in each gastrointestinal tract section 1 

The distribution of constant feed markers, AIA and Cr along the gastrointestinal tract is 86 2 

± 4% and 77 ± 3% shown in Fig 5.3. Pulse dose marker recovery for Ce, Yb, La and Co 3 

averaged 72 ± 4%, 71 ± 4%, 69 ± 6% and 59 ± 5% respectively (Fig 5.4). The markers fed 4 

at earlier intervals to the pigs had a higher recovery across all diets, for example, 40% of 5 

Ce (fed 6 h prior to euthanasia) had reached the PC, 20% of Yb (4 h) was recovered in PC 6 

and after 2 h, La and Co had only reached SI3. La was recovered mostly in the stomach 7 

(60-80%), whereas a higher proportion of Co was recovered in SI3.  8 

 9 

5.4.4. Retention and transit times of constant feed markers 10 

The retention and transit times relative to each gastrointestinal tract section show a similar 11 

trend for both constant feed markers (AIA and Cr), where transit time was longest in the 12 

colon, followed by small intestine and stomach (Fig 5.5). The retention time of AIA and Cr 13 

averaged 3 h in the stomach, and 2.3 h in the caecum, while transit time averaged 0.5 h in 14 

SI2, 1.6 h in SI3, 0.8 h in SI4, 7 h in PC, 4.8 h in MC and 3.7 h in DC. Interestingly, even 15 

though SI2 and SI3 were split into equal lengths, transit time in SI3 is significantly longer 16 

(P=0.05). A longer transit time was also observed in the PC compared to MC and DC 17 

(P=0.03). The total retention and transit times for the pectin diet was 21 h, mango diet was 18 

24 h and control diet was 25 h, suggesting that a higher pectin content in the digesta 19 

reduced the transit time, consistently with a faster passage rate along the gastrointestinal 20 

tract (Fig 5.6). The passage of digesta was faster along the small intestine relative to the 21 

colon. 22 

 23 
Figure 5.5. Time (hours) that (A) acid insoluble ash and (B) chromium spent in the 24 

gastrointestinal tract of pigs fed the control (☐), 15% mango () or 10% pectin () diets. 25 

Time spent in the stomach (STO) and caecum (CAE) is represented as retention time, 26 

while time spent in the small intestine (SI1-4) and colon (PC-DC) is represented as transit 27 

time. Any significant (P<0.05) interactions between diet and gastrointestinal tract site 28 

(P>0.05) are marked by an asterisk (*). Data is expressed as mean±standard error. SI: 29 

small intestine, PC: proximal colon, MC: mid colon, DC: distal colon. 30 
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There were no AIA measurements for SI1 due to insufficient digesta collected for AIA 1 

anlysis. This was a common problem for all thirty pigs where SI1 always contained the 2 

least digesta, ranging between 3-43 g as compared to other sites, which ranged between 3 

800 and 1600 g. The transit time of SI1 using Cr was obtained from only three pigs and 4 

was very short (<0.5 h), but does not reflect a statistical representation, therefore this 5 

value was not used to calculate the passage rate for SI1 (Fig 5.6). 6 

 7 

 8 
Figure 5.6. Rate of passage (RoP) at which (A) acid insoluble ash and (B) chromium pass 9 

through the gastrointestinal tract of pigs fed the control, 15% mango or 10% pectin diets. 10 

The rate of passage for the proximal to distal colon has been expanded for (A) and (B). 11 

Stomach and caecum are mixing pools and therefore, excluded in this calculation and 12 

figure. Any significant (P<0.05) interactions between diet and gastrointestinal tract site 13 

(P>0.05) are marked by an asterisk (*). Data is expressed as mean±standard error. SI: 14 

small intestine, PC: proximal colon, MC: mid colon, DC: distal colon. 15 

 16 

5.4.5. Retention and transit times of pulse dose markers 17 

The passage of pulse dose solid and liquid phase markers at different time intervals along 18 

the gastrointestinal tract is shown in Fig 5.7 (and Fig A4.1, Appendix 4). Ce was 19 

administered at an earlier time interval (2 h before the other markers) and had travelled 20 

furthest along the tract to the DC, mostly being retained in the caecum and PC. Yb fed 4 h 21 

pre-euthanasia, travelled to the MC with a longer transit time in SI3 whereas La and Co 22 

which were fed 2 h pre-euthanasia, only reached the ileum (SI4) and mostly remained in 23 

the stomach. Transit time in the duodenum (SI1) was <0.06 h for all markers, although this 24 

was only determined from pigs who had sufficient digesta in SI1. An significant effect of 25 

diet (P<0.05) was observed for the pulse dose markers (Fig 5.7), where retention and 26 

transit times were highest in the mango digesta for Ce and Yb, particularly in the caecum 27 

and PC. Between the 2 h markers, La, the solid marker had a sigificantly longer transit 28 

time (P=0.02) in the jejunum (SI2-3) for the mango digesta, while Co, the liquid marker, in 29 

the control diet had the shortest retention time (0.3 h) in the stomach and fastest transit 30 
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time in SI3, suggesting that Co travelled more rapidly through the tract in the liquid phase 1 

of digesta in the absence of the pectin. Increased concentration of pectin or mango in the 2 

diet led to a significantly (P=0.002) increased retention time in the stomach and transit 3 

time in the small intestine. 4 

 5 

 6 

Figure 5.7. Retention and transit times of pulse dose markers: cerium (- - -), ytterbium ( 7 

), lanthanum (. . .) and cobalt () along the gastrointestinal tract of pigs fed the (A) 8 

control (☐), (B) 15% mango () or (C) 10% pectin () diets. Time spent in the stomach 9 

(STO) and caecum (CAE) is represented as retention time, while time spent in the small 10 

intestine (SI1-4) and colon (PC-DC) is represented as transit time. SI: small intestine, PC: 11 

proximal colon, MC: mid colon, DC: distal colon. 12 

 13 

5.4.6. Fractional outflow rates of stomach and small intestinal contents 14 

Fractional outflow rates of digesta leaving the stomach, and influx and outflow rates into 15 

the small intestine are shown graphically in Fig 5.8. Table A4.1 (Appendix 4) shows the 16 

numerical fractional outflow and influx rates. At 6 h pre-euthanasia, the stomach fractional 17 

outflow rate of the pectin-fed pigs was more rapid than the stomach fractional outflow from 18 

control-fed pigs, but became similar after 2 h pre-euthanasia.  19 

 20 

 21 
Figure 5.8. Fractional outflow rate of (A) stomach and (B) small intestinal digesta at 6 h, 4 22 

h and 2 h post-euthanasia from pigs fed the control  (☐), 15% mango () or 10% pectin 23 

() diets. Data is expressed as mean±standard error. Fractional outflow rate (mg/h) was 24 

calculated as outflow divided by pool size, per hour. 25 
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5.5. Discussion 1 

5.5.1. Methodological considerations 2 

Unlike other reported studies, gastrointestinal tract contents were not recovered using 3 

cannulae, rather the contents were collected at one time-point post-euthanasia. 4 

Additionally, the length of each gastrointestinal tract site was determined, allowing for the 5 

passage rate to be expressed in terms of meters per hour as opposed to a quantified 6 

marker concentration passing a specific site with unknown length or volume approximates, 7 

as did Wilfart et al. (2007a). 8 

 9 

During formulation of the experimental diets, Cr was one of the last feed components to be 10 

added to the feed mixing vessel. Cr was added in a lesser quantity than AIA, and equal 11 

dispersion of this marker may not have been entirely achieved despite rigorous mixing. 12 

Analysis of Cr in feed samples revealed concentrations varying from 191-222 mg/kg DM. 13 

To improve the homogeneity of Cr or any marker to be added in very low quantities, it is 14 

suggested that mordanting to a dietary component be done prior to mixing into the diet. 15 

AIA was added in considerably larger quantities (24-26 g/kg DM); hence achieving 16 

homogeneity was not a concern. Despite the challenge of obtaining Cr homogeneity in the 17 

feed, the amounts of Cr and AIA recovered in each gastrointestinal tract site were not 18 

significantly different (Fig 5.3). Consequently, the profiles of retention and transit times 19 

between the two markers were very similar (Fig 5.5), leading to similar digesta passage 20 

rates regardless of homogeneity concerns. 21 

 22 

5.5.2. Lower dry matter content in the digesta reduced retention and transit times  23 

The digesta DM had a significant impact (P<0.05) on the total tract transit time from the 24 

stomach to the DC (Table 5.3 and Fig 5.5). Generally, a higher digesta DM contributed to 25 

a longer transit time. The averaged total digesta retention and transit times was 21 h for 26 

the pectin diet, 24 h for the mango diet and 25 h for the control diet. The pectin diet had 27 

the highest WHC, while the pectin-fed pigs had the shortest transit time and therefore had 28 

a faster passage rate along the gastrointestinal tract. An accelerated rate of flow of digesta 29 

through the colon by the addition of soluble and insoluble dietary fibres such as 30 

supplementary bran, lactulose and pectin to the diet has been reported for pigs (Kass, Van 31 

Soest, Pond, Lewis, & Macdowell, 1980; Low, Nelson, & Sporns, 1988; Wilfart, Montagne, 32 

Simmins, Noblet, & van Milgen, 2007b; Wilfart, Montague, Simmins, Noblet, & Van Milgen, 33 

2007a).  34 

 35 
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It should be noted that there is a 2 h period from the last feeding to time of slaughter so the 1 

reduction in dry matter content of the diets (91-92%) after ingestion to digestion in the 2 

stomach (24-31%) is not immediate. During ingestion of the dry feed, water was added to 3 

the feeding trough to improve palability and for ease of swallowing the feed, and the pigs 4 

had ad libtum access to water. These conditions, along with the addition of saliva and 5 

gastric secretions all contributed to increased moisture content of the stomach digesta 6 

after passage from oral ingestion. In the stomach, the digesta DM in pigs fed the control 7 

diet was higher than in pigs fed the mango and pectin diets due to increased water 8 

retention of these two diets, resulting in easier passage of the liquid digesta phase into the 9 

small intestine for the control diet. This is validated by Co, the 2 h liquid phase marker, in 10 

Fig 5.4D where 30% of Co was recovered in the stomach digesta of control-fed pigs 11 

compared to 60-80% recovery in the mango- and pectin-fed pigs. Digesta contents are 12 

known to be heterogeneous and in addition to the presence of pectin with water holding 13 

capacity (in the mango and pectin diets), led to differences in particle drainage and rate of 14 

digesta transit into the small intestine.  15 

 16 

In the duodenum (SI1), the digesta from mango and pectin-fed pigs were expected to have 17 

a lower DM content due to their swelling/solubility properties as observed from the 18 

increased WHC of the pectin diet. From SI1 to SI2, digesta DM decreased in the pectin 19 

diet but rose in the other two diets, suggesting that less water was taken up from the 20 

pectin (diet) digesta for absorption from this segment compared with the other two. In SI3, 21 

irrespective of diet, water was removed from the digesta with residual DM% reflecting 22 

again the higher WHC of pectin component in the diet and digesta. In the ileum (SI4), 23 

there was a clear expression of WHC of pectin, where pectin digesta held significantly 24 

more water than the control (P=0.0003). In the caecum, water was removed from the 25 

control digesta due to lack of structuring; however, water was removed from the pectin 26 

digesta presumably as a result of rapid fermentation, leaving residual pectin digesta with 27 

similar properties to the control residual digesta. The mango digesta maintained a low 28 

DM% potentially due to less extensive fermentation of the cell wall material in the mango 29 

component compared with fermentation of the soluble pectin diet. 30 

 31 

Throughout the colon from PC to DC, the digesta continued to lose water due to the 32 

colon’s high capacity for water absorption (Sandle, 1998) and depletion of available 33 

substrates by fermentation. The increase in digesta DM from the PC to DC suggests there 34 

was a cease in the colonic-microbial activity, leading to an accumulation in non- 35 
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fermentable components in the DC. Wiggins (1983), and Cummings and Macfarlane 1 

(1991) have previously reported fermentation activity being greatest in the left (proximal) 2 

colon, and then the digesta was ejected though the transverse (mid) colon to the right 3 

(distal) colon for storage and eventual excretion in humans. Digesta from control-fed pigs 4 

reached 42% DM, also potentially due to lower numbers of water-holding bacteria 5 

(Friedman & Henry, 1938). The digesta DM from mango-fed pigs started to increase and 6 

become similar to that of pectin-fed pigs as the mango component fermented. The digesta 7 

from pectin and mango-fed pigs had lower DM% than the digesta from the control-fed pigs 8 

potentially due to greater levels of water-holding bacteria. As pectin is readily fermentable 9 

in the colon (Jorgensen, Zhao, & Eggum, 1996; Sunvold, Hussein, Fahey, Merchen, & 10 

Reinhart, 1995), those colonic bacteria utilising pectin as a substrate proliferated rapidly 11 

too. Those bacteria having a high water content (Bratbak & Dundas, 1984; Friedman & 12 

Henry, 1938) contributed to the higher water content of the digesta from the pectin-fed 13 

pigs. In addition, Satchithanandam, Vargofcakapker, Calvert, Leeds and Cassidy (1990) 14 

suggested that fibre induced increments in gastrointestinal mucin production may be 15 

responsible for the increased transit time found in their rat feeding study. 16 

 17 

These results however, are in disagreement with other previous findings (Owusu-Asiedu et 18 

al., 2006; Potkins, Lawrence, & Thomlinson, 1991). Potkins et al. (1991) concluded that 19 

guar gum and pectin (10 and 50 g/kg) did not significantly affect the total tract transit time, 20 

while Owusu-Asiedu et al. (2006) found that guar gum and cellulose decreased digesta 21 

passage rate to the ileum by 0.42%/h and 0.3%/h respectively. A number of factors in 22 

addition to diet have been described to influence retention time, including animal weight 23 

(Le Goff, Van Milgen, & Noblet, 2002), age (Almirall & Esteve-Garcia, 1994) and feeding 24 

frequency (Goetsch & Galyean, 1983).  25 

 26 

5.5.3. Acid insoluble ash and chromium as passage markers for retention time, 27 

transit time and passage rate 28 

Digesta transit through the stomach and small intestine averaged 3 h and 3.2 h 29 

respectively, whereas a relatively longer transit time was recorded for the caecum and 30 

colon (19 h). Similar retention and/or transit times have been reported for pigs, varying 31 

between 2-16 h in the stomach and small intestine (Guerin et al., 2001; Hendriks, van 32 

Baal, & Bosch, 2012) and 20-40 h through the colon (Low, 1993). The present study is the 33 

first known study to report digesta transit time and passage rate along numerous 34 

gastrointestinal tract sections, and provided insights into the dynamic passage of digesta, 35 
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particularly in the presence of a soluble fibre both in its isolated form and as a component 1 

of food. The small intestinal compartment showed variable transit times from 0.3 h in the 2 

duodenum (SI1), 0.5-1.6 h in the jejunum (SI2-3) and 0.8 h in the ileum (SI4). Through 3 

mathematical modelling, Letourneau-Montminy et al. (2011) estimated transit time in the 4 

proximal segment of the small intestine to be 0.2 h, which is comparatively similar to 5 

results from the present study. But their transit time calculations of 3 h in the distal 6 

segment (Letourneau-Montminy et al., 2011) may have been grossly overestimated. 7 

 8 

After leaving the stomach mixing pool, the digesta travelled rapidly through the first half of 9 

the jejunum (SI2) at 10 m/h, then slowed down to 3 m/h in the remaining half (SI3) and 1 10 

m/h in the ileum (SI4) (Fig 5.6). A decrease in passage rate was observed in the small 11 

intestine, which agrees with a lower frequency of segmental contractions in the distal ileum 12 

in comparsion to the duodenum (Laplace, Aumaitre, & Rerat, 2001; Van Weyenberg, 13 

Sales, & Janssens, 2006). Van Weyenberg et al. (2006) also reported a quicker transit rate 14 

of 30 cm/min or 18 m/h for most of the digesta in the small intestine (in horses), which may 15 

not be entirely true for all the sections of the small intestine in other domestic animals. As 16 

transit time and passage rate are inferred from the quantity of markers recovered in the pig 17 

digesta post-euthanasia, a time delay resulting from myoelectric migrating complexes and 18 

colonic (aboral, propagated and isolated) contractions were not seen in this study. This 19 

leads to a probable conclusion that the rate of digesta passage may be more rapid in the 20 

small intestine. 21 

 22 

Interestingly, across all diets, transit time in the PC (7.2 h) was significantly (P=0.03) 23 

higher than that in the MC (4.7 h) and DC (3.6 h) despite being divided equally into three 24 

portions based on length (0.88 m each). It has been suggested that peristaltic actions 25 

stimulating propulsive colonic motility may be responsible for this differential passage of 26 

digesta (Crema, Frigo, & Lecchini, 1970; Edwards, 1990; Laplace, 1981). The total colon 27 

transit time, including the caecum averaged 18 h for the solid digesta phase and was 28 

much shorter than the 35 h reported by Wilfart et al. (2007a).  29 

 30 

5.5.4. Retention time in the stomach is reduced by the presence of pectin and 31 

mango in the digesta  32 

In the stomach, the retention of Co from pigs fed the control diet (Fig 5.7) was shorter (0.3 33 

h) than the retention of La (0.8 h), suggesting that the liquid phase of the digesta moved 34 

faster than the solid phase except when pectin was present, which is consistent with pectin 35 
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being able to hydrodynamically retain water (Liu, Cooke, Coffin, Fishman, & Hicks, 2004; 1 

Vandamme, Lenourry, Charrueau, & Chaumeil, 2002). Latymer et al. (1985) also reported 2 

that there was a lack of liquid and solid phase separation in the digesta from pigs that were 3 

fed pectin and guar gum, and this was attributed to the high viscosity and colloidal nature 4 

of the solutions (Latymer, low, & Woodley, 1985). Hypertonic solutions have also 5 

demonstrated a slower gastric emptying rate (Paraskevopoulos, Houghton, Eyre-Brooke, 6 

Johnson, & Read, 1988). 7 

 8 

Retention of digesta in the stomach averaged 3 h in the present study compared to 9 

literature retention values in pigs varying greatly from 1-7 h (Guerin et al., 2001; Hendriks, 10 

van Baal, & Bosch, 2012), which are strongly influenced by dietary components. Previous 11 

studies have reported that retention time in the stomach decreased when diets were 12 

supplemented with guar gum and pectin (Potkins, Lawrence, & Thomlinson, 1991) or not 13 

influenced at all (Latymer & Low, 1985). Potkins, Lawrence and Thomlinson (1991) 14 

determined the rate of gastric emptying via the decrease in total DM content in the 15 

stomach at various time intervals (0.5, 1, 2, 4, 7.5 h) post-feeding to the total DM of the 16 

given meal. They recovered less DM in the stomach of pigs fed guar gum and pectin 1-4 h 17 

postprandially, but did not determine the amount of liquid in the stomach at these time 18 

points. Inferring the gastric emptying rate based solely on stomach DM contents neglects 19 

the fact that stomach contents comprise both a solid and liquid phase. The results from the 20 

present study showed that those pigs that were fed pectin retained significantly more liquid 21 

in the stomach (Fig 5.7), and at 6 h postprandially (Fig 5.8). The liquid phase of the 22 

stomach contents from the pigs fed the control diet had progressed significantly more to 23 

the small intestine. Pectin had a higher affinity for water, based on the WHC results in the 24 

present study, and has been described to form a gel in the stomach (Drochner, Kerler, & 25 

Zacharias, 2004), which restricts the liquid phase on passing through the pyloric valves. 26 

However, pectin did not affect the retention time of the solid digesta phase in the stomach 27 

based on the use of any of the other three pulse dose markers. 28 

 29 

5.6. Concluding Remarks 30 

The selection of solid and liquid markers to measure the independent flow in defined (solid 31 

and liquid) phases improved the reliability of digesta flow estimates in the diets containing 32 

wheat starch, mango and pectin. The mango ingredient containing soluble fibre (pectin) 33 

and purified pectin delayed gastric fractional outflow to the duodenum, showing pectin 34 

being able to hydrodynamically retain water, as reflected in a lower dry matter content and 35 
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increased water holding capacity of the pectin diet. However, after leaving the stomach 1 

compartment, the rate of digesta transit through the small intestine and colon, for pigs fed 2 

these two diets, was significantly quicker as a result of increased digesta viscosity. This is 3 

the first study to show differences in transit times within segments of the small intestinal 4 

tract (SI1: 0.3 h, SI2: 0.5 h, SI3: 1.6 h, SI4: 0.8 h) and within the colon (PC: 7.2 h, MC: 4.7 5 

h, DC: 3.6 h). The constant feed marker, AIA confirmed its reliability in providing insights 6 

into the dynamic passage of digesta along the digestive tract, and the use of pulse dose 7 

markers permitted the determination of the fractional outflow rate of digesta, specifically in 8 

the stomach and small intestine. Recommendation for future work continuing from this 9 

study includes improving the homogeneity of Cr or any markers to be added in very low 10 

quantities by mordanting to a dietary component prior to mixing with the other ingredients 11 

in the diet. 12 

 13 

 14 

 15 

 16 
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Chapter 5. Passage of mango and pectin, and polyphenol metabolism in the 17 

gastrointestinal tract of pigs – a human model 18 

 19 

Part B. Can mango polyphenol metabolism in the gastrointestinal tract and blood of 20 

pigs be monitored after feeding mango-containing whole diets? 21 

5.7. Introduction to Part B 22 

Polyphenols are receiving much current attention due to potential beneficiary health effects 23 

related to their biological and pharmacological properties e.g. (Drouin et al., 2011), anti- 24 

inflammatory (Peri et al., 2005; Suzuki et al., 2010), anti-carcinogenic (Hertog et al., 1995; 25 

Yamanaka, Oda, & Nagao, 1997), anti-aging (Drouin et al., 2011; El Gharras, 2009), and 26 

cardio-protective and vasodilatory potentials (Erdman et al., 2007; Fraga & Oteiza, 2011), 27 

suggesting an association between consumption of polyphenol-rich foods and a reduced 28 

risk of several chronic diseases. These studies have characterised molecular components 29 

and signalling pathways in cells using a range of in vitro and laboratory techniques, and 30 

linked these to specific bioactivities as a means of defining potential health benefits of 31 

consuming specific fruits or vegetables.  32 

 33 

Over recent years, research on the in vivo metabolic fate of polyphenols has been actively 34 

growing, focusing on detecting original/parent compounds and secondary metabolites in 35 

plasma, urine, tissues or faeces. It is crucial that bioavailability studies use metabolites 36 

that are actually found in the human body, since absorption is accompanied by extensive 37 

conjugation and metabolism, and the forms appearing in the plasma and target organs, 38 

and those as a result of digestive or hepatic activity, are different from the native structures 39 

in food (Manach et al., 2004). 40 

 41 

Absorbed metabolites appear transitorily in plasma, but are treated by the human body as 42 

xenobiotics and are quickly removed from the bloodstream. While plasma analysis 43 

provides insights into pharmacokinetic profiles of circulating metabolites after short-term 44 

supplementation, ‘area under the curve’ estimates do not provide accurate quantitative 45 

assessments of uptake from the gastrointestinal tract (Crozier, Del Rio, & Clifford, 2010). 46 

Urinary excretion provides a more realistic estimate, but excludes the possibility of 47 

sequestration in body tissues and underestimates the degree of absorption. Vital 48 

information such as the specific intestinal site of metabolism, tissue distribution and 49 

accumulation is still lacking. Approaches to quantify the intestinal absorption of 50 

polyphenols in humans include intake-excretion balance and total plasma ‘phenolic 51 
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response’ (Clifford, van der Hooft, & Crozier, 2013), but are estimates per se. Phenolic 52 

metabolism in animal models has been investigated mostly in rats, but pigs would be a 53 

preferable animal model as the porcine digestive system is more physiologically and 54 

anatomically similar to humans (Almond, 1996; Miller & Ullrey, 1987). 55 

 56 

Simple pig feeding studies have been carried out using single purified compounds (Kreuz 57 

et al., 2008; Lesser, Cermak, & Wolffram, 2004; Luehring, Blank, & Wolffram, 2011; Wang 58 

et al., 2007) or as a mixture (Bock, Waldmann, & Ternes, 2008) but these fall short of 59 

capturing the confounding variables present in a ‘complex’ food system. Only one study 60 

has examined a system approaching that of a whole food (ellagitannin metabolism in pigs 61 

that were fed acorns) and reported that the degradation of ellagitannins started from the 62 

jejunum and the last metabolite was produced in the colon (Espin et al., 2007). However, 63 

this study included an acorn-only diet, which is not a diet of normal human consumption. 64 

Digesta from the jejunum and colon were collected, but no measurements regarding the 65 

two sites were specified. In contrast, the present study aimed to add food ingredients 66 

found in human diets into the pig feed, and to examine the fate of dietary polyphenols 67 

through the digestive system. 68 

 69 

So far, no reported studies have examined the in vivo intestinal metabolism of polyphenols 70 

using fruits. Therefore, a pig feeding trial using a diet containing 15% dried mango fruit 71 

powder was carried out to address this knowledge gap. Here, the aim was to study the 72 

degradation of intact original polyphenols in mango fruit, and their biotransformation to 73 

respective catabolites, in defined sites of the entire gastrointestinal tract in ‘real time’ 74 

(Chapter 5 Part B), based on measured digesta passage rates (Chapter 5 Part A). 75 

 76 

5.8. Materials and Methods 77 

5.8.1. Pigs, diets, experimental design, housing and feeding  78 

All animal and experimental procedures are described in Part A (sections 5.3.1-5.3.4). 79 

 80 

5.8.2. Collection of digesta, blood and urine 81 

At two weeks prior to the introduction of the experimental diets (June 2013), baseline 82 

blood sample (20-30 mL) from the pig’s jugular vein (JV) was withdrawn into EDTA- 83 

vacutainers and centrifuged at 4500 g for 10 min at 4°C to obtain (6-12 mL) plasma. 84 

Additionally, after two weeks of feeding the experimental diets to these pigs, JV blood 85 

samples were similarly collected. The plasma was acidified with 10.44 M TFA (1.2 mL) and 86 
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immediately stored at -80°C. During the slaughter week, digesta samples from six 87 

gastrointestinal tract sites (stomach, SI1, SI2, SI4, caecum, PC, and DC) (Fig 5.1) were 88 

collected and stored (section 5.3.3). Blood from the JV and hepatic portal vein (HPV) were 89 

also collected, centrifuged and stored similarly as to the baseline plasma. Any haemolysis 90 

in plasma samples was recorded, which may interfere with polyphenol extraction. Urine 91 

(30 mL) was collected, acidified with formic acid (10:1), and immediately stored at -20°C. 92 

 93 

5.8.3. Sample preparation and extraction 94 

Digesta samples were thawed overnight at 4°C. Next, digesta sample (1 g) was spiked 95 

with 10 µL quercetin (50 µg/mL in 80% methanol) as an internal standard, homogenised 96 

with 5 mL acidified 80% methanol (180 rpm, 15 min) and then centrifuged at 14,000 g for 97 

10 min. Samples were then processed according to Espin et al. (2007) with modifications. 98 

The supernatant was collected and the methanolic phase was vacuum evaporated to <2 99 

mL at 50°C (2 h) using a MiVac Speedvac (Scitek, NSW, Australia). Formic acid (12 mM; 100 

10 mL) was added to the remaining aqueous extract and sonicated for 5 min. Sep-Pak 101 

C18 (12 CC, 2 g) cartridges (Waters, NSW, Australia) were conditioned sequentially with 2 102 

x 5 mL methanol, equilibrated with 2 x 5 mL formic acid (12 mM), loaded with previously 103 

prepared extracts, washed with 2 x 5 mL formic acid (12 mM) and the phenolic fraction 104 

was eluted with 10 mL acidified methanol (12 mM formic acid) using a vacuum manifold. 105 

Eluates were vacuum evaporated at 50°C (~10 h) to <2 mL, frozen, and freeze-dried 106 

overnight. The extracts were reconstituted with methanol:acetonitrile (50:50) acidified with 107 

0.1% formic acid, filtered through 0.2 µm GHP Acrodisc syringe filters (Pall, NSW, 108 

Australia), kept at -20°C, and analysed by UPLC-PDA and UHPLC-Q-ToF-MS.  109 

 110 

Plasma samples (3 mL) were thawed at room temperature for 1 h, spiked with 40 µL 111 

quercetin (50 µg/mL) and centrifuged at 140,000 g for 10 min. Polyphenol extraction from 112 

plasma used a method that was slightly modified from that of Frank, Netzel, Strass Bitsch 113 

and Bitsch (2003). C18 cartridges (900 mg, Grace Davison, Victoria, Australia) were 114 

activated with methanol (2 x 5 mL) and equilibrated with 1.5 M formic acid (2 x 5 mL), after 115 

which plasma (3 mL) was loaded. The cartridges were then washed again with 2 x 5 mL 116 

1.5 M formic acid and 2 x 5 mL dichloromethane to remove dissolved proteins, and lipid 117 

soluble hormones and fatty acids. The phenolic fraction was eluted with 10 mL 0.44 M TFA 118 

in methanol, vacuum evaporated at 50°C for 3 h, reconstituted with 50% acidified 119 

acetonitrile (0.1% formic acid) to 1 mL, filtered through 0.2 µm GHP Acrodisc syringe 120 

filters, and finally, kept at -20°C prior to UPLC-PDA and UHPLC-Q-ToF-MS analysis.  121 
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5.8.4. UPLC-PDA analysis 122 

UPLC-PDA analysis was carried out on a Waters AcquityTM UPLC-PDA system with a 123 

VisionHT C18 Basic column (100 x 2 mm, 1.5 µm) equipped with a guard column (5 x 2 124 

mm), and operating at 30°C. Mobile phases A and B were 0.1% formic acid and 0.1% 125 

formic acid in acetonitrile respectively. The best separation was obtained using the 126 

following gradient elution: 98% A (3 min), 96-70% A (10 min), 70% A (5 min), 70-40% A (2 127 

min), 40-2% A (0.1 min), 2% A (4.9 min), 2-98% A (0.1 min), 98%A (4.9 min) at 0.3 128 

mL/min. The injection volume was 5 µL. UV-Vis spectra were recorded from 210-498 nm. 129 

Data acquisition was carried out using Empower Pro v.2 software. A calibration curve was 130 

constructed from ferulic acid (0.25, 0.5, 1, 5, 10, 20 µg/mL) at 320 nm and phenolic 131 

concentrations were corrected to per g DM, reported as the average of six (pig) replicates 132 

and calculated as ferulic acid equivalents at 320 nm. Chromatographic peaks were 133 

gathered and assigned peak numbers common to the diets and digesta.  134 

 135 

5.8.5. UPLC-ESI-Q-ToF-MS analysis 136 

UHPLC-Q-ToF-MS conditions were the same are described in Chapter 4 Part B (section 137 

4.8.3), except that 20 eV collision energy was used. 138 

 139 

5.8.6. Calculations and statistical analysis 140 

For polyphenol metabolism in the in vivo trial, only pigs fed the mango and control diets 141 

are of interest so the experimental unit was twelve pigs (six pigs per diet). Compound 142 

peaks detected in the chromatograms of digesta, plasma, urine, and diets were assigned 143 

numbers common across all UPLC-UV chromatograms. Individual phenolic concentrations 144 

in the digesta were corrected to per g of AIA marker recovered at each gastrointestinal 145 

tract site and pooled content was calculated from total digesta DM. Plasma phenolic 146 

concentrations were calculated as per mL. Polyphenol concentrations were analysed using 147 

Proc mixed in SAS 9.3 (SAS Institute, Inc., Cary, NC, USA), with diet as a mixed effect. 148 

The effects of Diet, Gastrointestinal tract site, and the Diet*Gastrointestinal tract site 149 

interaction were determined by the slice statement. Group means were analysed using 150 

Proc GLM and significance differences was set at P<0.05. 151 

 152 

5.9. Results and Discussion 153 

5.9.1. Methodological considerations 154 

Quantification of peaks in the diets and digesta chromatograms was carried out at 320 nm, 155 

rather than 280 nm as described in Part B of Chapter 4, since the intense absorbance of a 156 
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large number of compounds at 280 nm resulted in the poor separation and co-elution of 157 

many individual peaks, leading to inaccurate quantification despite optimisation of the 158 

gradient elution program and serial dilution. An example showing the large disparity in 159 

chromatographic absorbance between 280 and 320 nm is shown in Fig 5.9 for the diets 160 

and the original mango powder. Because an absorbance wavelength of 320 nm was used 161 

for quantification, most of the detected compounds are assumed to be phenolic 162 

compounds consisting of extended aromatic ring structures, which have a characteristic 163 

absorbance at 320 nm. No other dietary compounds are expected to absorb at 320 nm. 164 

 165 

5.9.2. Compounds detected in the original diets and mango powder 166 

There are compounds unique to the mango powder and mango diet that are not present in 167 

the control diet, which indicates these compounds originate from the mango powder. 168 

These include compounds responsible for the peaks 1-4, 9-14, 17, 22 and 33 (Table 5.4 169 

and Fig 5.10). Compounds 5 and 6 were only present in the mango powder, suggesting 170 

that they occur in low initial concentrations in the mango powder and therefore, may not be 171 

detected in the diet. Compounds 7, 8, 16, 18, 20, 25-30 were present in all the control diet, 172 

mango diet and mango powder, suggesting common compounds. 173 

 174 

Table 5.4. Compounds detected in the chromatograms of extracts of the control and 175 

mango (15% mango powder) diets, and dried mango powder. 176 
Peak no1 Retention time (min) Control diet Mango diet Mango powder  

1 2.218    

2 2.473    

3 2.704    

4 2.880    

5 3.851    

6 4.478    

7 6.251    

8 6.307    

9 6.377    

10 6.843    

11 7.043    

13 7.460    

14 7.504    

16 8.684    

17 8.488    

18 8.998    

20 9.514    

22 9.982    

25 12.253    

26 11.136    

27 11.707    

30 15.633    

33 12.093    
1Peak numbers may not be assigned in order of increasing elution time. ✓refers to compounds that are 177 
detected in the diets or powder.  refers to the absence of these compounds in the diets or powder. 178 
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 179 

 180 

 181 

182 
Figure 5.9. Chromatogram overlay showing differences in UV-Vis absorbance intensities 183 

between (A) control diet, (B) mango diet and (C) mango powder, at 280 nm (black) and 184 

320 nm (red). Vertical scale reads 1.1 x 102 on all chromatograms. 185 
 186 
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 187 

 188 

 189 

Figure 5.10. UV-Vis (320 nm) chromatograms of extracts of (A) control diet, (B) mango 190 

diet, and (C) mango powder. Peak numbers here correlate to those in Table 5.4. The 191 

chromatogram of the mango powder extract shows the chromatographic profile after a 2x 192 

dilution. 193 
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5.9.3. Biotransformation in the digestive tract 194 

The addition of Celite (measured as AIA) as a constant marker in the diets was used to 195 

quantify the disappearance of the intact polyphenols and the production of metabolites by 196 

correcting their measured concentrations in the digesta to per g of AIA at various sites of 197 

the gastrointestinal tract. This removes the variables of total digesta volumes and DM 198 

content, which is influenced by simultaneous digestive processes including the absorption 199 

of dietary components, such as macronutrients and water, or the endogenous secretions 200 

of mucus, bile and enzymes. 201 

 202 

The chromatographic profiles along the digestive tract from the stomach to the end of the 203 

colon of pigs fed the mango diet are shown in Fig 5.11. Investigation of the identities of the 204 

large number of compounds detected in the digesta was attempted, but due to the 205 

complex natures of the UPLC chromatograms produced by UV-Vs and MS detection, no 206 

compounds were identified in the present in vivo study. However, based on the used 207 

solvent gradient elution program, it is expected that those phenolic classes containing 208 

more hydroxyl groups and glycosides (being more polar) will elute earlier than the 209 

relatively less hydrophilic flavonols. In addition, those phenolic compounds or small 210 

intestinal metabolites that are absorbed and recycled back to the small intestinal sites 211 

(SI2-4), through enterohepatic circulation and bile excretion (Donovan et al., 2006), may 212 

undergo glucuronidation and/or sulfation which would render them more hydrophilic and 213 

early eluting (Manach et al., 2004). In the sampling sites of the stomach, SI2 and SI4, a 214 

larger number of early eluting and thus more hydrophilic compounds are observed, which 215 

suggest that highly hydrophilic compounds may be directly absorbed in the earlier 216 

segments of the gastrointestinal tract. However, for extracts of the caecum digesta, there 217 

is a shift in the compound elution profile to longer elution times (Fig 5.11), which reflects 218 

the passage and fate of less hydrophilic compounds along the digestive tract. Compounds 219 

detected by UPLC in extracts of the lower gastrointestinal tract samples, PC and DC, 220 

suggest that aglycones, microbial catabolites, and trapped phenolic compounds are likely 221 

to be released only in the caecum and colon. These findings are important, since no 222 

studies have reported the elution profiles of in vivo phenolic metabolites, especially after 223 

colon-microbial fermentation or liver conjugation. 224 

225 
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 226 
Figure 5.11. UV-Vis chromatographic profiles (320 nm) of digesta extracts from various 227 

gastrointestinal sites, A) stomach, B) SI2, C) SI4 (area containing dense number of peaks 228 

has been expanded), D) caecum, E) PC and F) DC of pigs fed the mango diet. Peak 229 

numbers correlate to those in Fig 5.12. Peak numbers may not be assigned in order of 230 

increasing elution time. SI: small intestine, PC: proximal colon, DC: distal colon. 231 

232 
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The relative concentrations of compounds associated with peaks detected in the 233 

chromatograms from digesta of the control- and mango-fed pigs are shown in Fig 5.12. 234 

Overall, most of these compounds are present in higher concentrations in the digesta of 235 

the mango-fed pigs. However, compounds 22, 25, 27, 35, 38, 39, 41, 42, 44, 45, 47-50, 56 236 

and 57 are present at similar or higher concentrations in the control-fed pigs digesta 237 

relative to the mango-fed pig digesta, and therefore, are not relevant in this discussion. 238 

However, all other peaks of interest show an interesting digestive profile. For example, 239 

compounds 1, 2, 13 and 14 displayed a distinctive disappearance profile from the stomach 240 

to SI2, suggesting these compounds were being degraded by intestinal porcine enzymes 241 

or absorbed into the intestinal epithelium within the duodenum and first half of the jejunum. 242 

 243 

The concentrations of peaks 4, 10, 16, 18, 20, 26, 30, 33, 34, 40, 46, 54, 55 and 59 244 

increased after leaving the stomach and reached their maximum concentration in SI2 245 

before gradually decreasing during passage to SI4. As the concentration of these peaks 246 

have been corrected/adjusted for the indigestible AIA marker, it is unlikely this apparent 247 

increase in SI2 represents a greater concentration of slowly absorbing compounds from 248 

the uptake of water and rapidly absorbed nutrients from protein and starch. These 249 

compounds are more suggestive of intact phenolic compounds being liberated from 250 

protein interactions or other diet components during gastric digestion, or due to amplified 251 

mechanical interactions between the digesta and the finger-like projections of intestinal villi 252 

(Waltona et al., 2012), explaining the significant spike in concentrations in SI2 (P<0.05). 253 

There is currently no available literature on the gastrointestinal tract sites of, for example, 254 

de-glycosylation and/or uptake of polyphenols within the small intestine in pig models, 255 

except that reported by Espin et al. (2007) who reported that degradation of one class of 256 

polyphenols, the ellagitannins, started from the jejunum. These fourteen compounds are 257 

further metabolised, potentially leading to the formation of compounds 36, 51, 52, 53 and 258 

58, which are produced from the end of the small intestine (SI4) and caecum (Fig. 5.12). 259 

These compounds accumulate through to the DC, suggesting they are derived from 260 

microbial metabolism and would, at least in part, be excreted out of the body through 261 

faeces. The complexity of chromatographic profiles may be challenging but classes of 262 

compounds were clearly observed to undergo distinctive digestive processing as a 263 

function of gastrointestinal tract location in this study, which would not be achievable in in 264 

vitro bioaccessibility and/or metabolism studies. 265 
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266 

267 

 268 
Figure 5.12. Compounds detected in the digesta (stomach, small intestine (SI2, SI4), 269 

caecum and colon (PC, DC) of pigs fed the mango (M) and control (C) diets. Peak 270 

numbers correspond to those of the diets. Concentrations of individual peaks are a pooled 271 

average of six pigs (for each diet). 272 

273 
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5.9.4. Distribution of circulating metabolite profiles in plasma pre- and postprandial 274 

There was a relatively smaller number of compounds (four) occurring in the HPV and JV 275 

plasma (Fig 5.13) in comparison to the diets or digesta extracts at the UV-Vis absorbance 276 

of 320 nm. However, quantification of these four compounds (peaks 3, 5, 8 and 13) was 277 

carried out at 280 nm, where these compounds had a stronger absorbance. In addition to 278 

peaks 3, 5, 8 and 13, fifteen compounds were detected in the HPV and JV plasma extracts 279 

of both sets of pigs fed the mango and control diets (Fig 5.14). Their circulation kinetics 280 

and concentrations are shown in Fig 5.15, but their identities remains un-elucidated. 281 

 282 

All ninteen compounds are present in all the plasma extracts, i.e. there are no unique 283 

compounds in the HPV or circulating JV plasma from the mango diet. Most of the 284 

compounds are present in higher concentrations in the plasma of pigs fed the mango diet 285 

than the control diet, except for compounds 12, 13, 14 and 17, which suggest they are 286 

components from other diet ingredients rather than the mango powder. Compounds 3, 13 287 

and 16 are an interesting group; although they are present in the baseline plasma of pigs 288 

fed the control and mango diets, they only appeared in the HPV and JV plasma of the 289 

mango-fed pigs after euthanasia. 290 

 291 

Compound 10, although present in the plasma of both mango- and control-fed pigs, was 292 

not present in the baseline plasma and only appeared in the JV after the pigs were put on 293 

the mango diet for two weeks, suggesting this compound may be a phenolic metabolite 294 

(whatever was the source of the original polyphenol). Phenolic metabolites have been 295 

reported to have a long residence time in plasma (24-48 h after a single dose of 296 

administration of the precursor) (Kuijsten, Arts, Vree, & Hollman, 2005) (Vetrani et al., 297 

2014). Compounds 1 and 2 are present in larger amounts in the HPV plasma than in the 298 

JV, indicating high absorption levels from the small intestine and/or colon, which are then 299 

transported through the tributaries of the super mesenteric vein (connecting the HPV) to 300 

the liver for Phase l and ll metabolism. It is not confirmed where these two compounds are 301 

absorbed in the intestine, but their presence in the HPV plasma indicates that ingestion of 302 

these two compounds (or their respective parent compounds), and passage though the 303 

digestive tract, absorption through the intestinal epithelial cells and passage into the blood 304 

in the HPV took place rapidly within 2 h. Espin et al. (2007) have reported the absorption 305 

of free ellagic acids within 30 min to 1 h after intake.  306 

 307 

 308 
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 309 
Figure 5.13. UV-Vis chromatograms at 280 nm (red) and 320 nm (black) of plasma from 310 

(A) hepatic portal vein (HPV), (B) jugular vein (JV), (C) JV_2w and (D) JV_BL of pigs fed 311 

the mango diet. JV_BL: JV baseline plasma (pigs on commercial diet), JV_2w: JV (two 312 

weeks after pigs were fed the experimental diets), HPV and JV: five weeks after the pigs 313 

were put on the experimental diets. Peak numbers correlate to those in Fig 5.15. 314 
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 315 

Figure 5.14. UV-Vis chromatograms (280 nm) of plasma from (A) hepatic portal vein 316 

(HPV), (B) jugular vein (JV), (C) JV_2w and (D) JV_BL of pigs fed the mango diet. JV_BL: 317 

JV baseline plasma (pigs on commercial diet), JV_2w: JV (two weeks after pigs were fed 318 

the experimental diets), HPV and JV: five weeks after the pigs were put on the 319 

experimental diets. Peak numbers correlate to those in Fig 5.15. 320 
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 321 
Figure 5.15. Concentrations (µg/mL plasma) of nineteen detected compounds from (A) 322 

hepatic portal vein and (B) jugular vein plasma extracts of pigs fed the mango (M) and 323 

control (C) diets. Data is expressed as mean±standard error of µg/g dry matter of ferulic 324 

acid equivalents. Concentrations of individual peaks are a pooled average of six pigs (for 325 

each diet). 326 

 327 

5.10. Concluding Remarks 328 

The possibility of monitoring mango polyphenol metabolism and uptake along the digestive 329 

tract and into the blood stream (hepatic portal and jugular vein) appears promising. The 330 

fate of individual compounds as a function of location in the digestive tract can be studied, 331 

but identification of molecular structures within such complex chromatographic profiles is a 332 

major challenge. There is evidence for at least three types of polyphenol type behaviour- 333 

rapid uptake, slow uptake and/or intermediary metabolism in the small intestine, and 334 

microbial fermentation primarily in the colon. Despite mango powder inclusion at 15% of 335 

the diet, and all other major components being relatively pure protein, starch and lipid 336 

(refer to diet list earlier in thesis), the polyphenolic content of the control diet was 337 

apparently comparable to or greater than that from mango. The reasons for this need to be 338 

further explored. The next step of this area of study would be to analyse individual diet 339 
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ingredients, using UPLC-PDA to assess their absorbance at 320 nm in the UV-Vis 340 

chromatograms. This would enable the determination of the components that are 341 

absorbing at the same wavelength as those polyphenols that have an extended aromatic 342 

ring structure. Feeding standard phenolic compounds to pigs may appear to be a more 343 

realistic and simpler approach, but the true residence passage time and site of absorption 344 

along the gastrointestinal tract would be different without a real fruit system to provide 345 

interactions with other diet cellular components. In order to understand whole diet effects 346 

(including passage rates), future work should continue to focus on the whole diet effect, 347 

but perhaps with more stringent screening of dietary materials to minimise complications 348 

from unintended dietary phenolics. 349 
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Chapter 6. General conclusions and recommendations 

This thesis has focused on studying the effects on mango (Kensington Pride) and banana 

(Cavendish) fruit flesh of sequential digestive processing in the mouth, stomach, small 

intestine and colon, using a combination of in vitro and in vivo approaches. This study has 

shown that bioaccessibility of macro- and phytonutrients from whole food is initially 

affected by the mastication process, and then by potential gastrointestinal liberation from 

the encapsulating fruit matrix (cell wall and membrane). In vivo mastication conferred a 

range of particle sizes (large particle clusters from >5.6 mm to cell fragments of <75 μm) 

that was not achieved by simple blending (pureed cell components are 5-10 μm in size), in 

addition to the consequent actions of compression, squashing and formation of a bolus. 

Since previous in vitro digestion studies of whole fruits and vegetables have typically not 

investigated the influence of mastication on the release and/or bioaccessibility of macro- 

and micro-nutrients, both bioaccessibility and bioavailability values may have been  

overestimated in some reported studies. Despite some reported digestibility studies 

favouring mechanical processing or pureeing, there is a lack of emphasis on the critical 

importance of the mastication process. Results from the present study (Chapter 3) showed 

that the bioaccessibility of carotenes and xanthophylls is significantly overestimated in 

pureed mango (65-75%) in comparison to in vivo masticated fractions of varying particle 

sizes (20-50%); however, there was incomplete bioaccessibility after simulated 

gastrointestinal digestion. Future studies of nutrient release from fruit tissue involving 

standard two-phase in vitro digestion models will be improved by including an in vivo 

human chewing phase to realistically represent oral processing effects on bioaccessibility. 

 

Microscopic observations of intact mango cells and vascular fibres after gastrointestinal 

digestion in vitro, established that some unreleased phytonutrients will survive to the 

colon. The subsequent in vitro fermentation of (mango and banana) cell structures after in 

vitro gastric and small intestinal digestion resulted in degradation of non-fibrous cell walls 

within 48 h, releasing the effectively encapsulated cellular contents for microbial 

metabolism. Upon disintegration of the cell walls, phenolic compounds were consequently 

liberated and exposed to faecal-microbial metabolism involving ring fission, 

dehydroxylation and decarboxylation that is beyond the capabilities of human endogenous 

enzymes. UPLC-PDA and UHPLC-Q-ToF-MS profiles revealed degradation of intact 

polyphenols within 8-24 h with concomitant formation and accumulation of catabolites 

within 4-8 h, confirming the colon as an active metabolism site for phytonutrients. 
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The presence of a fermentation-resistant starch fraction in banana, which was absent in 

mango, led to distinctive differences in fermentation kinetics (cumulative gas and short 

chain fatty acid and ammonia production) between these two fruits, reflecting a preferential 

degradation of (parenchyma) fleshy cells over resistant starch and over thick cellulosic 

vascular fibres (particularly from mango). Unexpectedly, the thin banana cell walls present 

before in vitro microbial fermentation were more readily fermented than the starch 

granules, which the cell walls had encapsulated previously. As microscopic degradation of 

banana cell walls was only investigated at 48 h, the time required for degradation of these 

cell walls is not known; therefore, more time intervals, preferably 3-hourly examinations 

should also be explored in future work following the present study, as well as an extended 

fermentation of ≥72 h to investigate the complete degradation of resistant starch and 

cellulosic fibres. The slow fermentability of banana starch conferred by its intrinsic 

resistance to pancreatic enzymes and faecal microbiota, and the presence of cell-wall 

encapsulation, may have implications on calorific content, satiety, glucose metabolism and 

passage rates (via faecal bulking) along the colon. The rapid butyrate production from 

mango fermentation, or the slow fermentability of banana starch (favouring butyrate 

production) is suggestive of a longer colon residence time, which is important in 

contributing to the anti-inflammatory, anti-carcinogenic and anti-proliferative properties that 

are so important to colon health. Butyrate impacts on cellular metabolic pathways in 

colonic cancer cells by inducing cell growth inhibition and differentiation (Blouin et al., 

2011; Otles & Ozgoz, 2014).  

 

The (retention) time available for nutrient digestion and fermentation in the gastrointestinal 

tract is determined by the passage rate of intestinal contents, which is influenced by 

dietary components. The present in vivo pig-feeding study showed that mango fruit pulp 

cellular components (cellulosic fibres and pectin) and purified pectin increased the 

passage rate of digesta through the digestive tract. There was a decreased dry matter 

content in the digesta of mango- and pectin-fed pigs, compared to the control diet 

containing mostly wheat starch, which demonstrated a differential water-holding capacity 

of the diets, resulting in an increased digesta viscosity and a reduction in overall passage 

time. The present study provided insights into the dynamic movement of gastrointestinal 

contents, which were found on average, to be 3 h in the stomach, 0.3 h in the duodenum, 

0.5-1.6 h in the jejunum, 0.8 h in the ileum, 2.3 h in the caecum, 7 h in the proximal colon, 

4.8 h in the mid colon and 3.7 h in the distal colon. Such retention and/or transit times for 

specific locations in the digestive tract have not been reported previously, and this 
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information is critical for comparing the results of in vitro bioaccessibility/metabolism 

studies (where time is a variable) to the in vivo situation where residence time/passage 

rate is determined by interactions of the food with humans and/or animals (Fig 6.1). 

 

 

Figure 6.1. Overview of the relationship between the passage of food through the 
gastrointestinal tract, digestion of nutrients in the small intestine and fermentation in the 
colon. Adapted from (Topping & Clifton, 2001). 
 

The monitoring of polyphenol (e.g. in mango) metabolism and uptake along the digestive 

tract and into the blood stream (hepatic portal and jugular vein) appears promising as a 

means to assess the fate of individual compounds as a function of location in the digestive 

tract/body site. In the present study, various classes of compounds were found to undergo 

distinctive digestive processing, with evidence for at least three types of polyphenol 

behaviour- rapid uptake; slow uptake in the small intestine; and microbial fermentation 

primarily in the colon. Although the complexity of chromatographic profiles and 

corresponding mass spectra precluded detailed molecular identification, future in vivo pig 

feeding experiments should continue to focus on the whole diet effect, but perhaps with 

more stringent screening of dietary materials to minimise complications from unintended 

dietary phenolics. Future considerations following from this study should also include 

assessing the usefulness of the MS technique of selected reaction monitoring mode 

(SRM) of individual compounds, as approached in some reported studies (de Oliveira et 

al., 2013; Jenner, Rafter, & Halliwell, 2005; Mosele et al., 2014), and the study of other 

relevant samples reflecting post-absorptive phenolic metabolism, such as the liver and 

urine. 
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Although fruits and vegetables are known to be an essential part of a healthy diet, 

evidence of diet and health outcomes linked to a range of antioxidant, cardio-protective 

and vasodilatory properties is primarily based on epidemiological studies, which do not 

permit underlying mechanisms to be determined. In the past, the concept of prebiotics was 

limited to non-digestible carbohydrates, where fermentable carbohydrates and fibres can 

alter greatly the microbial ecology, by acting as substrates or supplying short chain fatty 

acids. This ignores associated nutrients such as polyphenols which may also have an 

effect on the microflora composition. Much attention has been directed toward the study of 

specific beneficial lactic acid bacteria such as probiotics (usually Bifidobacteria or 

Lactobacilli) rather than a study of intestinal microbiota as a whole (Peng, Li, Luo, Wu, & 

Liu, 2013; Tuohy et al., 2012). However in recent years, diet-induced changes in 

microbiota are gaining more attention, where the health effects attributed to dietary 

polyphenols and their metabolism is suggested to modulate gut microbial composition 

through the stimulation of beneficial species and inhibition of pathogenic species (Hervert-

Hernandez & Goni, 2011; Jacobs et al., 2009; Selma, Espin, & Tomas-Barberan, 2009). 

 

In conclusion, the present study has evaluated aspects of the digestive processing of two 

archetypal fruits, mango and banana, to illustrate the importance of combining in vitro and 

in vivo studies to achieve a more complete perspective of human digestion. Consequently, 

the project has contributed to the process of defining mechanisms of how fruits (and 

vegetables) contribute to health and well-being as suggested by many epidemiological 

studies. In addition, the present study has shown how fruits contribute to other health 

aspects due to differences in the structural fruit matrix and the proportion of cellular 

components in different fruits, which lead to varying digestion and fermentation kinetics, 

and different nutrient metabolism and uptake. These results have contributed to a better 

understanding of the fruit matrix-phenolic-microbiota interactions, and subsequently their 

physiological impact on gut health. Therefore, the regular consumption of diets rich in fruits 

(and vegetables) with high phytonutrient content may beneficially balance the gut microbial 

ecology, helping to prevent gastrointestinal disorders and thus, enhance the health of the 

host. 
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APPENDICES 

Appendix 1. 

 
Figure A1.1. Human ethics approval form for approval of human mastication of fresh fruits 
experiments from 2012-2015 (approved by the Medical Research Ethics Committee). 
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Appendix 2. 

 

 
Figure A2.1. Dry matter cumulative volume time course profiles (g/mL dry matter) of 
replicates of masticated mango and banana substrates (unfractionated, 2.8, 1 and 0.075 
mm) during 48 h microbial fermentation in vitro. 
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Appendix 3. 

 
Figure A3.1. UPLC-PDA chromatograms of fermented (A) mango and (B) banana from 0-
48 h at 280 nm. Disappearance of peaks was observed during the first 8 h, along with the 
concomitant increase in ‘metabolite’ peaks.  
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Figure A3.2. UV spectra of twelve compounds detected in fermented mango and banana 
samples. The identity and characteristics of each peak correlates with those in Table 4.3.  
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Figure A3.3. TCC and UV chromatograms of polyphenol authentic standards at 280 nm. 
(A) Standard mix of chlorogenic acid, coumaric acid, mangiferin, epicatechin, ferulic acid, 
quercetin and caffeic acid, (B) standard mix of benzoic acid, pyrogallol, 3- and 4-
hydroxybenzoic acid, cinnamic acid, 4-hydroxyphenylacetic acid, protocatechuic acid, 
neochlorogenic acid, (C) standard mix of hippuric acid, quinic acid, syringic acid, ethyl 
ferulate, kaempferol, 3-(4-hydroxyphenyl)propanoic acid, 3-(3,4-
dihydroxyphenyl)propanoic acid. Note that while some phenolics appear in both TCC and 
UV chromatograms, some compounds do not show up on the TCC or if they do, appear in 
extremely low intensities unless an ‘Extracted Ion Chromatogram’ feature was performed 
for a targeted m/z. 
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Table A3.1. The retention time, chemical formula, mass, [M-H]- m/z and UV-Vis absorbance maxima of commercial authentic standards 
analysed using UPLC-PDA and UHPLC-Q-ToF-MS instruments. 
Compound Retention 

time (min)1 
Retention 
time (min)2 

Chemical 
formula 

Molecular 
mass (Da) 

[M-H]- m/z λmax (nm) 

Pyrogallol  11.223 2.979 C6H6O3 126.110 125.0250 301/268 

Benzoic acid 7.776 11.603 C7H6O2 122.121 121.0250 230/273 

3-Hydroxybenzoic acid  
(m-hydroxybenzoic acid) 
4-hydroxybenzoic acid  
(p-hydroxybenzoic acid) 

5.683 
 

5.106 

8.800 
 

9.299 

C7H6O3 
 

138.121 
 

138.121 

137.0247 
 

137.0249 

200/236/296 
 

200/255 

4-Hydroxyphenylacetic acid  5.094 7.703 C8H8O3 152.147 151.0462 222/274 

3-(4-Hydroxyphenyl)propanoic acid 6.956 9.870 C9H10O3 166.174 165.0556 222/276 

3-(3,4-Dihydroxyphenyl)propanoic acid 
(dihydrocaffeic acid) 

5.248 7.766 C9H10O4 182.170 181.0508 210/280/318 

Protocatechuic acid  2.935 6.850 C7H6O4 154.120 153.0196 219/259/293 

Cinnamic acid 11.510 14.205 C9H8O2 148.159 147.0452 217/278 

Hippuric acid  4.741 8.997 C9H9NO3 179.173 178.0515 228/314 

Caffeic acid 7.321 9.670 C9H8O4 180.157 179.0360 217/324 

Quinic acid 11.364 1.139 C7H12O6 192.167 191.0568 215/287 

Ferulic acid  9.445 11.416 C10H10O4 194.184 193.0485 218/235/323 

Syringic acid  7.650 9.188 C9H10O5 198.173 197.0456 217/275 

Coumaric acid 7.336 11.632 C9H8O3 164.158 163.0392 227/309 

4-Caffeoylquinic acid 
5-Caffeoylquinic acid 

7.244 9.632 
9.632 

C16H18O9 354.309 
354.309 

353.0882 
353.0882 

218/326/366 
218/241/326 

Ethyl ferulate (ethyl 4-hydroxy-3-
methoxycinnamate) 

14.468 17.670 C12H14O4 222.237 221.1185 218/236/324 

Kaempferol (aglycon) 14.883 18.150 C15H10O6 286.236 285.0400 221/364 

Quercetin dihydrate (aglycon)  13.318 16.331 C15H10O7 302.236 301.0390 2000/255/371 

Mangiferin/isomangiferin  7.553 9.246 C19H18O11 422.340 421.0823 258/318/366/425 

Epicatechin 8.263 9.113 C15H14O6 290.268 289.0753 219/279 
1Retention time based on gradient elution from UV chromatograms. 2Retention time based on gradient elution from Q-ToF-MS chromatograms. 
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Appendix 4. 

 
Figure A4.1. Retention and transit times of pulse dose markers (A) cerium, (B) ytterbium, 
(C) lanthanum and (D) cobalt passage along the gastrointestinal tract of pigs fed the 

control (☐) diet, or 15% mango () or 10% pectin () at the expense of wheat starch. 

Time spent in the stomach (STO) and caecum (CAE) is represented as retention time, 
while time spent in the small intestine (SI1-4) and colon (PC-DC) is represented as transit 
time. Any significant (P<0.05) interactions between diet and gastrointestinal tract site 
(P>0.05) are marked by an asterisk (*). Data is expressed as means±standard error. SI: 
small intestine, PC: proximal colon, MC: mid colon, DC: distal colon. 
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Table A4.1. Two-hourly outflow and influx rates (mg/2 h) from stomach and small intestine 
respectively, from pigs fed the control diet, or 15% mango or 10% pectin at the expense of 
wheat starch. 

Control diet (n=9) 

Post 
marker 
dose (h) 

Stomach Small intestine1 

Pool size2 
(mg) 

Influx (mg/2 
h) 

Outflow3 
(mg/2 h) 

Pool size 
(mg) 

Influx (mg/2 
h) 

Outflow 
(mg/2 h) 

0 500.00 0 0 0 0 0 
2 228.53 0 271.47 97.09 271.47 174.38 
4 153.76 0 74.77 115.59 74.77 56.27 
6 76.01 0 77.76 89.28 77.76 104.07 

Pectin diet (n=7) 

Time after 
feed (h) 

Pool size 
(mg) 

Influx (mg/2 
h) 

Outflow 
(mg/2 h) 

Pool size 
(mg) 

Influx (mg/2 
h) 

Outflow 
(mg/2 h) 

0 500.00 0 0 0 0 0 
2 269.82 0 230.18 56.41 230.18 173.78 
4 133.54 0 117.87 169.46 117.87 4.82 
6 38.37 0 109.32 130.82 109.32 147.96 

Mango diet (n=9) 

Time after 
feed (h) 

Pool size 
(mg) 

Influx (mg/2 
h) 

Outflow 
(mg/2 h) 

Pool size 
(mg) 

Influx (mg/2 
h) 

Outflow 
(mg/2 h) 

0 500.00 0 0 0 0 0 
2 222.69 0 277.31 146.18 277.31 131.14 
4 104.48 0 118.21 164.21 118.21 100.18 
6 35.62 0 68.86 79.49 68.86 153.57 

1Small intestine here refers to the sum of combined small intestinal (SI1-4) sites. 2Pool size at 0 h refers to 
the averaged feeding dose (mg) of cerium, ytterbium and lanthanum to the pigs, and pool size at 6, 4, 2 h 
refers to cerium, ytterbium and lanthanum respectively, measured in the stomach or combined small 
intestinal digesta. 3Outflow rate of digesta from the stomach equals to influx rate into the small intestine, and 
is specific for each marker, fed 2 h apart. 

 


