818 research outputs found

    Evaluating the stability of atmospheric lines with HARPS

    Full text link
    Context: In the search for extrasolar systems by radial velocity technique, a precise wavelength calibration is necessary for high-precision measurements. The choice of the calibrator is a particularly important question in the infra-red domain, where the precision and exploits still fall behind the achievements of the optical. Aims: We investigate the long-term stability of atmospheric lines as a precise wavelength reference and analyze their sensitivity to different atmospheric and observing conditions. Methods: We use HARPS archive data on three bright stars, Tau Ceti, Mu Arae and Epsilon Eri, spanning 6 years and containing high-cadence measurements over several nights. We cross-correlate this data with an O2 mask and evaluate both radial velocity and bisector variations down to a photon noise of 1 m/s. Results: We find that the telluric lines in the three data-sets are stable down to 10 m/s (r.m.s.) over the 6 years. We also show that the radial velocity variations can be accounted for by simple atmospheric models, yielding a final precision of 1-2 m/s. Conclusions: The long-term stability of atmospheric lines was measured as being of 10 m/s over six years, in spite of atmospheric phenomena. Atmospheric lines can be used as a wavelength reference for short-time-scales programs, yielding a precision of 5 m/s "out-of-the box". A higher precision, down to 2 m/s can be reached if the atmospheric phenomena are corrected for by the simple atmospheric model described, making it a very competitive method even on long time-scales.Comment: 7 pages, accepted for publication in A&

    Impact of stellar companions on precise radial velocities

    Full text link
    Context: With the announced arrival of instruments such as ESPRESSO one can expect that several systematic noise sources on the measurement of precise radial velocity will become the limiting factor instead of photon noise. A stellar companion within the fiber is such a possible noise source. Aims: With this work we aim at characterizing the impact of a stellar companion within the fiber to radial velocity measurements made by fiber-fed spectrographs. We consider the contaminant star either to be part of a binary system whose primary star is the target star, or as a background/foreground star. Methods: To carry out our study, we used HARPS spectra, co-added the target with contaminant spectra, and then compared the resulting radial velocity with that obtained from the original target spectrum. We repeated this procedure and used different tunable knobs to reproduce the previously mentioned scenarios. Results: We find that the impact on the radial velocity calculation is a function of the difference between individual radial velocities, of the difference between target and contaminant magnitude, and also of their spectral types. For the worst-case scenario in which both target and contaminant star are well centered on the fiber, the maximum contamination for a G or K star may be higher than 10 cm/s, on average, if the difference between target and contaminant magnitude is Δm\Delta m < 10, and higher than 1 m/s if Δm\Delta m < 8. If the target star is of spectral type M, Δm\Delta m < 8 produces the same contamination of 10 cm/s, and a contamination may be higher than 1 m/sComment: Accepted for publication in A&A on 29/12/2019 - 14 page

    Line-profile variations in radial-velocity measurements: Two alternative indicators for planetary searches

    Full text link
    Aims. We introduce two methods to identify false-positive planetary signals in the context of radial-velocity exoplanet searches. The first is the bi-Gaussian cross-correlation function fitting, and the second is the measurement of asymmetry in radial-velocity spectral line information content, Vasy. Methods. We make a systematic analysis of the most used common line profile diagnosis, Bisector Inverse Slope and Velocity Span, along with the two proposed ones. We evaluate all these diagnosis methods following a set of well-defined common criteria and using both simulated and real data. We apply them to simulated cross-correlation functions created with the program SOAP and which are affected by the presence of stellar spots, and to real cross-correlation functions, calculated from HARPS spectra, for stars with a signal originating both in activity and created by a planet. Results. We demonstrate that the bi-Gaussian method allows a more precise characterization of the deformation of line profiles than the standard bisector inverse slope. The calculation of the deformation indicator is simpler and its interpretation more straightforward. More importantly, its amplitude can be up to 30% larger than that of the bisector span, allowing the detection of smaller-amplitude correlations with radial-velocity variations. However, a particular parametrization of the bisector inverse slope is shown to be more efficient on high-signal-to-noise data than both the standard bisector and the bi-Gaussian. The results of the Vasy method show that this indicator is more effective than any of the previous ones, being correlated with the radial-velocity with more significance for signals resulting from a line deformation. Moreover, it provides a qualitative advantage over the bisector, showing significant correlations with RV for active stars for which bisector analysis is inconclusive. (abridged)Comment: 12 pages, 7 figures, accepted for publication in Astronomy and Astrophysics, comments welcom

    Impact of micro-telluric lines on precise radial velocities and its correction

    Full text link
    Context: In the near future, new instruments such as ESPRESSO will arrive, allowing us to reach a precision in radial-velocity measurements on the order of 10 cm/s. At this level of precision, several noise sources that until now have been outweighed by photon noise will start to contribute significantly to the error budget. The telluric lines that are not neglected by the masks for the radial velocity computation, here called micro-telluric lines, are one such noise source. Aims: In this work we investigate the impact of micro-telluric lines in the radial velocities calculations. We also investigate how to correct the effect of these atmospheric lines on radial velocities. Methods: The work presented here follows two parallel lines. First, we calculated the impact of the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum by synthetic atmospheric spectra and evaluated the effect created by the presence of the telluric lines. Then, we divided HARPS spectra by synthetic atmospheric spectra to correct for its presence on real data and calculated the radial velocity on the corrected spectra. When doing so, one considers two atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS. Results: We find that the micro-telluric lines can induce an impact on the radial velocities calculation that can already be close to the current precision achieved with HARPS, and so its effect should not be neglected, especially for future instruments such as ESPRESSO. Moreover, we find that the micro-telluric lines' impact depends on factors, such as the radial velocity of the star, airmass, relative humidity, and the barycentric Earth radial velocity projected along the line of sight at the time of the observation.Comment: Accepted in A&

    Radial Velocities with CRIRES: Pushing precision down to 5-10 m/s

    Full text link
    With the advent of high-resolution infrared spectrographs, Radial Velocity (RV) searches enter into a new domain. As of today, the most important technical question to address is which wavelength reference is the most suitable for high-precision RV measurements. In this work we explore the usage of atmospheric absorption features. We make use of CRIRES data on two programs and three different targets. We re-analyze the data of the TW Hya campaign, reaching a dispersion of about 6 m/s on the RV standard in a time scale of roughly 1 week. We confirm the presence of a low-amplitude RV signal on TW Hya itself, roughly 3 times smaller than the one reported at visible wavelengths. We present RV measurements of Gl 86 as well, showing that our approach is capable of detecting the signal induced by a planet and correctly quantifying it. Our data show that CRIRES is capable of reaching a RV precision of less than 10 m/s in a time-scale of one week. The limitations of this particular approach are discussed, and the limiting factors on RV precision in the IR in a general way. The implications of this work on the design of future dedicated IR spectrographs are addressed as well.Comment: 9 pages, accepted for publication in A&

    Freshwater reservoir offsets and food crusts: Isotope, AMS, and lipid analyses of experimental cooking residues

    Full text link
    Freshwater reservoir offsets (FROs) occur when AMS dates on charred, encrusted food residues on pottery predate a pot’s chronological context because of the presence of ancient carbon from aquatic resources such as fish. Research over the past two decades has demonstrated that FROs vary widely within and between water bodies and between fish in those water bodies. Lipid analyses have identified aquatic biomarkers that can be extracted from cooking residues as potential evidence for FROs. However, lacking has been efforts to determine empirically how much fish with FROs needs to be cooked in a pot with other resources to result in significant FRO on encrusted cooking residue and what percentage of fish C in a residue is needed to result in the recovery of aquatic biomarkers. Here we provide preliminary assessments of both issues. Our results indicate that in historically-contingent, high alkalinity environments\u3c20%C from fish may result in a statistically significant FRO, but that biomarkers for aquatic resources may be present in the absence of a significant FRO

    Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant

    Get PDF
    Echelle spectrographs currently provide some of the most precise and detailed spectra in astronomy, the interpretation of which sometimes depends on the wavelength calibration accuracy. In some applications, such as constraining cosmological variations in the fundamental constants from quasar absorption lines, the wavelength calibration is crucial. Here we detail an algorithm for selecting thorium-argon (ThAr) emission lines for wavelength calibration which incorporates the properties of both a new laboratory wavelength list and the spectrograph of interest. We apply the algorithm to the Very Large Telescope Ultraviolet and Visual Echelle Spectrograph (UVES) and demonstrate a factor of ≳3 improvement in the wavelength calibration residuals (i.e. random errors) alone. It is also found that UVES spectra calibrated using a previous, widely distributed line-list contain systematic ±30 -75 m s−1 distortions of the wavelength scale over both short and long wavelength ranges. These distortions have important implications for current UVES constraints on cosmological variations in the fine-structure constant. The induced systematic errors are most severe for Mg/Feii quasar absorbers in the redshift range 1.2 â‰Čzabsâ‰Č 2.3, with individual absorbers studied by recent authors containing systematic errors up to four times larger than quoted statistical error

    Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant

    Get PDF
    Echelle spectrographs currently provide some of the most precise and detailed spectra in astronomy, the interpretation of which sometimes depends on the wavelength calibration accuracy. In some applications, such as constraining cosmological variations in the fundamental constants from quasar absorption lines, the wavelength calibration is crucial. Here we detail an algorithm for selecting thorium-argon (ThAr) emission lines for wavelength calibration which incorporates the properties of both a new laboratory wavelength list and the spectrograph of interest. We apply the algorithm to the Very Large Telescope Ultraviolet and Visual Echelle Spectrograph (UVES) and demonstrate a factor of >3 improvement in the wavelength calibration residuals (i.e. random errors) alone. It is also found that UVES spectra calibrated using a previous, widely distributed line-list contain systematic +/-30-75 m/s distortions of the wavelength scale over both short and long wavelength ranges. These distortions have important implications for current UVES constraints on cosmological variations in the fine-structure constant. The induced systematic errors are most severe for Mg/FeII quasar absorbers in the redshift range 1.2 < z < 2.3, with individual absorbers studied by recent authors containing systematic errors up to 4 times larger than quoted statistical errors.Comment: 10 pages, 11 figures (16 EPS files). Accepted by MNRAS. Supplementary material, including electronic versions of all input and output ThAr atlases and colour versions of Fig. 3(right) available at http://www.ast.cam.ac.uk/~mim/pub.htm

    The Earth transiting the Sun as seen from Jupiter's moons: detection of an inverse Rossiter-McLaughlin effect produced by the opposition surge of the icy Europa

    Get PDF
    We report on a multiwavelength observational campaign which followed the Earth's transit on the Sun as seen from Jupiter on 2014 January 2014. Simultaneous observations of Jupiter's moons Europa and Ganymede obtained with high accuracy radial velocity planetary searcher (HARPS) from La Silla, Chile and HARPS-N from La Palma, Canary Islands were performed to measure the Rossiter-McLaughlin effect due to the Earth's passage using the same technique successfully adopted for the 2012 Venus Transit. The expected modulation in radial velocities was of ≈20cm s−1 but an anomalous drift as large as ≈38m s−1, i.e. more than two orders of magnitude higher and opposite in sign, was detected instead. The consistent behaviour of the two spectrographs rules out instrumental origin of the radial velocity drift and Birmingham Solar Oscillations Network observations rule out the possible dependence on the Sun's magnetic activity. We suggest that this anomaly is produced by the opposition surge on Europa's icy surface, which amplifies the intensity of the solar radiation from a portion of the solar surface centred around the crossing Earth which can then be observed as a sort of inverse Rossiter-McLaughlin effect. in fact, a simplified model of this effect can explain in detail most features of the observed radial velocity anomalies, namely the extensions before and after the transit, the small differences between the two observatories and the presence of a secondary peak closer to Earth passage. This phenomenon, observed here for the first time, should be observed every time similar Earth alignments occur with rocky bodies without atmospheres. We predict that it should be observed again during the next conjunction of Earth and Jupiter in 202

    Identification and weighting of the most critical "real-life” drug-drug interactions with acenocoumarol in a tertiary care hospital

    Get PDF
    Purpose: The objective of this study was to identify the most clinically relevant drug-drug interactions (DDIs) at risk of affecting acenocoumarol safety in our tertiary care university hospital, a 2,000 bed institution. Methods: We identified DDIs occurring with acenocoumarol by combining two different sources of information: a 1-year retrospective analysis of acenocoumarol prescriptions and comedications from our Computerized Physician Order Entry (CPOE) system (n = 2,439 hospitalizations) and a retrospective study of clinical pharmacology consultations involving acenocoumarol over the past 14 years (1994-2007) (n = 407). We classified these DDIs using an original risk-analysis method. A criticality index was calculated for each associated drug by multiplying three scores based on mechanism of interaction, involvement in a supratherapeutic international normalized ratio (INR) (≄ 6) and involvement in a severe bleeding. Results: One hundred and twenty-six DDIs were identified and weighted. Twenty-eight drugs had a criticality index ≄ 20 and were therefore considered at high risk for interacting with acenocoumarol by increasing its effect: 75% of these drugs involved a pharmacokinetic mechanism and 14 % a pharmacodynamic mechanism. An unknown mechanism of interaction was involved in 11 % of drugs. Conclusion: Twenty-eight specific drugs were identified as being at high risk for interacting with acenocoumarol in our hospital using an original risk-analysis method. Most analyzed drugs interact with acenocoumarol via a pharmacokinetic mechanism. Actions such as the implementation of alerts in our CPOE system should be specifically developed for these drug
    • 

    corecore