4,777 research outputs found

    Face and Object Recognition and Detection Using Colour Vector Quantisation

    Get PDF
    In this paper we present an approach to face and object detection and recognition based on an extension of the contentbased image retrieval method of Lu and Teng (1999). The method applies vector quantisation (VQ) compression to the image stream and uses Mahalonobis weighted Euclidean distance between VQ histograms as the measure of image similarity. This distance measure retains both colour and spatial feature information but has the useful property of being relatively insensitive to changes in scale and rotation. The method is applied to real images for face recognition and face detection applications. Tracking and object detection can be coded relatively efficiently due to the data reduction afforded by VQ compression of the data stream. Additional computational efficiency is obtained through a variation of the tree structured fast VQ algorithm also presented here

    Homogenised Virtual Support Vector Machines

    Get PDF
    In many domains, reliable a priori knowledge exists that may be used to improve classifier performance. For example in handwritten digit recognition, such a priori knowledge may include classification invariance with respect to image translations and rotations. In this paper, we present a new generalisation of the Support Vector Machine (SVM) that aims to better incorporate this knowledge. The method is an extension of the Virtual SVM, and penalises an approximation of the variance of the decision function across each grouped set of "virtual examples", thus utilising the fact that these groups should ideally be assigned similar class membership probabilities. The method is shown to be an efficient approximation of the invariant SVM of Chapelle and Scholkopf, with the advantage that it can be solved by trivial modification to standard SVM optimization packages and negligible increase in computational complexity when compared with the Virtual SVM. The efficacy of the method is demonstrated on a simple problem

    Space VLBI Observations of 3C 279 at 1.6 and 5 GHz

    Get PDF
    We present the first VLBI Space Observatory Programme (VSOP) observations of the gamma-ray blazar 3C 279 at 1.6 and 5 GHz. The combination of the VSOP and VLBA-only images at these two frequencies maps the jet structure on scales from 1 to 100 mas. On small angular scales the structure is dominated by the quasar core and the bright secondary component `C4' located 3 milliarcseconds from the core (at this epoch). On larger angular scales the structure is dominated by a jet extending to the southwest, which at the largest scale seen in these images connects with the smallest scale structure seen in VLA images. We have exploited two of the main strengths of VSOP: the ability to obtain matched-resolution images to ground-based images at higher frequencies and the ability to measure high brightness temperatures. A spectral index map was made by combining the VSOP 1.6 GHz image with a matched-resolution VLBA-only image at 5 GHz from our VSOP observation on the following day. The spectral index map shows the core to have a highly inverted spectrum, with some areas having a spectral index approaching the limiting value for synchrotron self-absorbed radiation of 2.5. Gaussian model fits to the VSOP visibilities revealed high brightness temperatures (>10^{12} K) that are difficult to measure with ground-only arrays. An extensive error analysis was performed on the brightness temperature measurements. Most components did not have measurable brightness temperature upper limits, but lower limits were measured as high as 5x10^{12} K. This lower limit is significantly above both the nominal inverse Compton and equipartition brightness temperature limits. The derived Doppler factor, Lorentz factor, and angle to the line-of-sight in the case of the equipartition limit are at the upper end of the range of expected values for EGRET blazars.Comment: 11 pages, 6 figures, emulateapj.sty, To be published in The Astrophysical Journal, v537, Jul 1, 200

    Dual-Frequency Observations of 140 Compact, Flat-Spectrum Active Galactic Nuclei for Scintillation-Induced Variability

    Get PDF
    The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in Interstellar Scintillation (ISS) for sources at redshifts z > 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources, relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the Intergalactic Medium (IGM), in excess of the expected (1+z)^0.5 angular diameter scaling of brightness temperature limited sources due to cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a sample of 140 compact, flat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H-alpha intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15 to 3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at spectral indices of < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of 3 decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM.Comment: 30 pages, 14 figures, accepted for publication in the Astronomical Journa

    Design of a large span-distributed load flying-wing cargo airplane with laminar flow control

    Get PDF
    A design study was conducted to add laminar flow control to a previously design span-distributed load airplane while maintaining constant range and payload. With laminar flow control applied to 100 percent of the wing and vertical tail chords, the empty weight increased by 4.2 percent, the drag decreased by 27.4 percent, the required engine thrust decreased by 14.8 percent, and the fuel consumption decreased by 21.8 percent. When laminar flow control was applied to a lesser extent of the chord (approximately 80 percent), the empty weight increased by 3.4 percent, the drag decreased by 20.0 percent, the required engine thrust decreased by 13.0 percent, and the fuel consumption decreased by 16.2 percent. In both cases the required take-off gross weight of the aircraft was less than the original turbulent aircraft

    Preliminary design characteristics of a subsonic business jet concept employing laminar flow control

    Get PDF
    Aircraft configurations were developed with laminar flow control (LFC) and without LFC. The LFC configuration had approximately eleven percent less parasite drag and a seven percent increase in the maximum lift-to drag ratio. Although these aerodynamic advantages were partially offset by the additional weight of the LFC system, the LFC aircraft burned from six to eight percent less fuel for comparable missions. For the trans-atlantic design mission with the gross weight fixed, the LFC configuration would carry a greater payload for ten percent fuel per passenger mile

    Scintillation in the Circinus Galaxy water megamasers

    Full text link
    We present observations of the 22 GHz water vapor megamasers in the Circinus galaxy made with the Tidbinbilla 70m telescope. These observations confirm the rapid variability seen earlier by Greenhill et al (1997). We show that this rapid variability can be explained by interstellar scintillation, based on what is now known of the interstellar scintillation seen in a significant number of flat spectrum AGN. The observed variability cannot be fully described by a simple model of either weak or diffractive scintillation.Comment: 10 pages, 5 figures. AJ accepte

    Earth Radiation Budget Experiment (ERBE) scanner instrument anomaly investigation

    Get PDF
    The results of an ad-hoc committee investigation of in-Earth orbit operational anomalies noted on two identical Earth Radiation Budget Experiment (ERBE) Scanner instruments on two different spacecraft busses is presented. The anomalies are attributed to the bearings and the lubrication scheme for the bearings. A detailed discussion of the pertinent instrument operations, the approach of the investigation team and the current status of the instruments now in Earth orbit is included. The team considered operational changes for these instruments, rework possibilities for the one instrument which is waiting to be launched, and preferable lubrication considerations for specific space operational requirements similar to those for the ERBE scanner bearings
    corecore