
Homogenised Virtual Support Vector Machines

Christian J. Walder1,2

1Max Planck Institute for Biological Cybernetics
Spemannstaße 38, 72076 Tübingen, Germany.
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Abstract

In many domains, reliable a priori knowledge exists that
may be used to improve classifier performance. For exam-
ple in handwritten digit recognition, such a priori knowl-
edge may include classification invariance with respect to
image translations and rotations. In this paper, we present
a new generalisation of the Support Vector Machine (SVM)
that aims to better incorporate this knowledge. The method
is an extension of the Virtual SVM, and penalises an approx-
imation of the variance of the decision function across each
grouped set of “virtual examples”, thus utilising the fact
that these groups should ideally be assigned similar class
membership probabilities. The method is shown to be an
efficient approximation of the invariant SVM of Chapelle
and Scḧolkopf, with the advantage that it can be solved by
trivial modification to standard SVM optimization packages
and negligible increase in computational complexity when
compared with the Virtual SVM. The efficacy of the method
is demonstrated on a simple problem.

1 Introduction

In recent years Vapnik’s Support Vector Machine (SVM)
classifier [9] has become established among the most effec-
tive classifiers on real-world problems. As remarked in a
comparison of classifiers applied to handwritten digit recog-
nition written by LeCunet al in 1995, SVMs are capable
of achieving high generalisation performance with none of
thea priori knowledge that is necessary in order to achieve
similar results with other methods [4].

In the years since this comparison was conducted, SVM

researchers have managed to incorporate problem specific
prior knowledge into the SVM algorithm. One very effec-
tive approach to date, as far as performance on the MNIST
handwritten digit database is concerned, has been the Vir-
tual SVM (V-SVM) method of Scholk̈opf et al [5]. Indeed,
to the best of our knowledge this method has achieved the
lowest recorded test set error on the MNIST set, with trivial
data preprocessing [3]. The V-SVM method involves first
training a normal SVM in order to extract the support vec-
tor set. A set of transformations that are known to have no
effect on the likelihood of class membership are then ap-
plied to these vectors, producing “virtual” support vectors.
For example, in the case of handwritten digits, new virtual
examples can be created by randomly shifting and rotating
(in the 2D image sense) the original training digits. A new
machine is then trained on the union of the original support
vector set and the synthetic virtual support vectors.

In V-SVM, when the machine is retrained on the aug-
mented training set, no distinction is made between the
“real” and virtual data vectors. As such, a potentially use-
ful piece of information about the problem is being dis-
carded, namely that we know the decision latent function
itself should be invariant to the transformations applied to
the support vectors not just the classifier output that cor-
responds to the sign of this latent function. Indeed, pre-
cisely this information has been incorporated in the “Invari-
ant SVM” (I-SVM) method of Chapelle and Scholköpf [2],
which has previously been implemented using ideas from
kernel PCA [7]. The present work lies in between the I-
SVM and V-SVM, in that the virtual examples are included
as in V-SVM but the I-SVM like invariance of the latent
function are imposed only on the support vectors. As we
shall see however, the present approach represents a rather
efficient approximation to the I-SVM as it can be imple-
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mented by trivial modification to existing SVM optimiza-
tion software such asLIBSVM [1], with the same compu-
tational cost as the V-SVM. The remainder of the paper is
structured as follows: in Section 2 we briefly review the
soft margin SVM, before introducing the I-SVM in Section
3. In Section 4 the main contribution of the paper begins
with the derivation of the necessary equations for the new
approach. In Section 5 we demonstrate the efficacy of the
new approach on a simple toy problem, showing improved
performance as compared to the state of the art and rather
hard to beat V-SVM.

2 Soft-Margin Support Vector Machines

In normal (squared loss) soft-margin SVM classification
[9], we have a set of labelled points̃xi ∈ Rd, i = 1 . . . N ,
with associated class labelsyi ∈ {1,−1}. The standard
SVM formulation solves the following problem:

Minimize w̃,b

〈w̃, w̃〉+ C
∑N

i=1 ξ2
i

Subject To:
yi (〈w̃, x̃i〉+ b) ≥ 1− ξi, i = 1 . . . N
ξi ≥ 0, i = 1 . . . N

whereC is a regularisation parameter. In the Lagrangian
dual of the above problem, the data vectors appear only by
way of their inner products with one another. This allows
the problem to be solved in a possibly infinite dimensional
feature spaceH by way of the “kernel trick”,i.e., the re-
placement of all inner products〈x̃i, x̃j〉 by some Mercer
kernelk (x̃i, x̃j) = φ (x̃i) .φ (x̃j), whereφ : Rd → H (see
e.g. [8]). By dualising the above problem in this manner,
we obtain the following final decision function:

g (x̃) = sign(f (x̃)) , wheref (x̃) =
N∑

i=1

α0
i yik (x̃i, x̃) + b

where theα0
i are obtained by maximising the dual objective

function:

W (α̃) =
N∑

i=1

αi − 1
2

N∑

i,j=1

αiαjyiyjk (x̃i, x̃j)

subject to the constraints
∑N

i=1 αiyi = 0 andαi ≥ 0.

3 Invariant Support Vector Machines

Previously, Chapelle and Schölkopf [6] incorporated do-
main specific prior knowledge into the linear SVM frame-
work by minimising the objective function:

(1− γ) 〈w̃, w̃〉+ γ
∑

i

(〈w̃, dx̃i〉)2

subject to the usual SVM constraints (see Section 2). The
tangent vectorsdx̃i are directions in whicha priori knowl-
edge tells us that the functional value atx̃i should not
change — the sense of the optimization can be seen from
the equality:

f (x̃ + dx̃i)− f (x̃) = 〈w̃, dx̃i〉
It turns out that the above problem is equivalent to the nor-
mal SVM after linearly transforming the input space by
x̃ → C−1

γ x̃ where the matrixCγ is defined by:

Cγ =

(
(1− γ) I + γ

∑

i

dx̃idx̃i

) 1
2

which was shown to be equivalent to using the following
kernel function in the otherwise unchanged SVM frame-
work:

kγ (x̃i, x̃j) = x̃>i Cγ
−2x̃j (1)

However in order to use the kernel trick to perform this al-
gorithm in the feature spaceH induced byk (·, ·), as in the
previous Section, one must replace the termdx̃idx̃i with
dΦ(x̃i) dΦ(x̃i) in the expression forCγ . SinceH is typi-
cally very high dimensional, it is impossible to do this di-
rectly. A solution to this problem using kernel PCA [7]
is given in [2], which takes advantage of the fact that the
set{φ (x̃i)}1≤i≤N spans a subset ofH whose dimension
is no greater thanN . Unfortunately however, computing
the modified kernel function in this manner does introduce
computational disadvantages, and the need for a large scale
version of the algorithm was noted by its authors in [2].

4 Homogenised Virtual SVM

In the I-SVM method of the previous Section, the tan-
gent vectorsdx̃i are usually not available directly, and so a
finite difference approximation is used. In this case the term∑

i (〈w̃, dx̃i〉)2 can be written:
∑

i

(〈w̃, x̃i +∇x̃i〉 − 〈w̃, x̃i〉)2 (2)

where the vector̃xi +∇x̃i is equivalent to a “virtual” vec-
tor of the V-SVM approach that has been derived fromx̃i.



In the V-SVM method, the virtual vectors are derived from
the real vectors by some group of “invariant” transforma-
tions, that is transformations that should not affect the like-
lihood of class membership. For example, in handwritten
digit recognition the group of one-pixel image translations
have been used to good effect [3] – in this case, for each of
the original training patterns an additional 8 “virtual” vec-
tors can be derived, one for each possible single pixel trans-
lation.

We will presently consider a combination of the I-SVM
and the V-SVM, which we dub the “Homogenised Virtual
SVM” (HV-SVM). To begin we combine the inclusion of
the virtual examples as in the V-SVM method, with the in-
variance term (2), allowing as well a soft margin with pa-
rameterC as in Section 2. Altogether this leads to the ob-
jective function:

(1− γ)

(
〈w̃, w̃〉+ C

∑

i

ξ2
i

)
+

γ
1
2

P∑
n=1

∑

∀i,j∈Sn

(〈w̃, x̃i〉 − 〈w̃, x̃j〉)2 (3)

where each of theP setsSn contain the subscripts of those
vectors that are invariant transformations of one another.
This effectively extracts a finite difference approximation of
an invariant direction for each pair of vectors in the same set
Sp. The term1

2 is included for an equivalence with I-SVM,
since here each invariant direction is effectively included
twice. The objective function must be minimized subject to
the normal SVM constraints of Section 2. It is well known
by the SVM community that these constraints lead to the
following optimality conditions:

αi (yi (〈w̃, x̃i〉+ b)− 1 + ξi) = 0

which imply that for those vectors that haveαi > 0 (the
support vectors), thenξi = 1 − yi (〈w̃, x̃i〉+ b). This
means that if̃xi and x̃j are support vectors belonging to
the same setSp, thenyi = yj ∈ {1,−1} and therefore
〈w̃, x̃i〉 − 〈w̃, x̃j〉 = ξi − ξj . Assuming that all vectors are
support vectors, the objective function (3) can therefore be
rewritten:

(1− γ)

(
〈w̃, w̃〉+ C

∑

i

ξ2
i

)
+ γ

1
2

P∑
n=1

∑

∀i,j∈Sn

(ξi − ξj)
2

(4)
In reality however, not all of the vectors will be support
vectors, and thus we effectively have an approximation that
becomes more ideal as the number of support vectors in-
creases. At this point we should note that the V-SVM
method usually retains only the support vectors from a pre-
liminary training iteration before deriving and retraining

with the virtual examples, and that by a similar process we
can reasonably expect a high proportion of support vectors.
Moreover, the approximation is roughly equivalent to min-
imising the invariance term of only those vectors that lie
near the decision boundary (the support vectors), which also
seems reasonable since those are the vectors that are widely
believed to contain the most important information.

We now find the Lagrangian dual of this approximation
to I-SVM. The algebra is less of a burden if we assume to
begin with that all of the vectors are in the same setS1.
Dividing the resultant objective function by(1− γ) gives
〈w̃, w̃〉+C

∑
i ξ2

i + γ
2(1−γ)

∑
i,j (ξi − ξj)

2 (the summations
run from i = 1 . . . N , j = 1 . . . N , as shall be assumed for
the remainder of this section). Note that:

C
∑

i ξ2
i + γ

2(1−γ)

∑
i,j (ξi − ξj)

2

= C
∑

i ξ2
i + γ

2(1−γ)

∑
i,j

(
ξ2
i + ξ2

j − 2ξiξj

)

=
(
C + γN

(1−γ)

) ∑
i ξ2

i − γ
(1−γ)

∑
i,j ξiξj

so that if we letF = C + γN
(1−γ) and G = − γ

(1−γ) the
objective function can be rewritten as:

〈w̃, w̃〉+ F
∑

i

ξ2
i + G

∑

i,j

ξiξj

The Lagrangian function with Lagrange multipliersαi is
then:

L
(
w̃, b, ξ̃, α̃

)
= 1

2 〈w̃, w̃〉+ 1
2F

∑
i ξ2

i + 1
2G

∑
i,j ξiξj

−∑
i αi (yi (〈w̃, x̃i〉+ b) + ξi − 1)

and the stationarity conditions are:

∂L
∂w̃ = 0̃ = w̃ −∑

i αiyix̃i (5)
∂L
∂b = 0 =

∑
i αiyi (6)

∂L
∂ξi

= 0 = Fξi + G
∑

j ξj − αi (7)

so w̃ has the usual “support vector expansion”w̃ =∑
i αiyix̃i. Substituting (5) and (6) into the Lagrangian

yields:

L = − 1
2

∑
i,j αiαjyiyj 〈x̃i, x̃j〉+

∑
i αi −

∑

i

αiξi + F
1
2

∑

i

ξ2
i + G

1
2

∑

i,j

ξiξj

= − 1
2 α̃>Hα̃ + ẽ>α̃− α̃>ξ̃ + 1

2F ξ̃>ξ̃ + 1
2Gξ̃>Eξ̃

whereH is the usual Gram matrix,[Hi,j ] = yiyj 〈x̃i, x̃j〉,
E is a matrix of ones andI the identity matrix. Rewriting



(7) in matrix form and left-multiplying bỹξ> implies that
F ξ̃>ξ̃ +Gξ̃>Eξ̃− α̃>ξ̃ = 0̃. The Lagrangian can therefore
be written:

L
(
w̃, b, ξ̃, α̃

)
= − 1

2 α̃>Hα̃ + ẽ>α̃− 1
2 α̃>ξ̃

Finally, we substitute the expression forξ̃ obtained from (7),
ξ̃ = (FI + GE)−1

α̃, which leads to the final form of our
dual objective function:

W ′ (α̃) = − 1
2 α̃>

(
H + (FI + GE)−1

)
α̃ + ẽ>α̃

At this point one can show that the matrix(FI + GE)−1

has entries equal toF+(N−1)G
F (F+GN) = C(1−γ)+γ

C(C(1−γ)+γN) on the di-

agonal and −G
F (F+GN) = γ

C(C(1−γ)+γN) elsewhere. Using
these expressions we can now compactly write down the fi-
nal form of the dual problem for (4). In this case one can
readily verify that the setsSn are treated similarly to the
previous case (in which it was assumed that there is one
single all encompassing setS1 = {1 . . . N}), resulting in a
dual problem that consists of minimising the dual objective
function 1

2 α̃> (H + B) α̃−ẽ>α̃ subject to the normal SVM
constraints (see Section 2). Referring to theSn as groups,
the matrixB is defined on the diagonal by:

[B]i,i =

{
C(1−γ)+γ

C(C(1−γ)+γNi)
(if x̃i is in a group)

1
C(1−γ) (otherwise)

(8)

whereNi is the total number of vectors iñxi’s group. Off
the diagonal,B is defined by:

[B]i,j =

{
γ

C(C(1−γ)+γNi)
(if x̃i andx̃j are same group)

0 (otherwise)
(9)

Note that ifγ = 0 (or if there are no non-empty groups),
thenB simplifies to a diagonal matrix with entries1C , re-
covering the soft-margin SVM of Section 2. The similar-
ity with normal SVM allows the problem to be solved by
trivial modification to existing SVM optimization packages
such asLIBSVM [1] – one need simply replace the typical
diagonal bias terms with theB term above.

4.0.1 Hybrid HV/I - SVM:

Note that it is also possible to derive a hybrid method that
is closer to the I-SVM, in the sense that it ignores only the
invariance terms of those entire setsSn that contain no sup-
port vectors. IfVn are the support vectors, andVn the non
support vectors in groupSn, the invariance term of the HV-
SVM method for that group is:

γ 1
2

(∑
∀i,j∈Vn

(〈w̃, x̃i〉 − 〈w̃, x̃j〉)2 + 2
∑
∀i∈Vn,j∈Vn

ξ2
i

)

Figure 1. An illustration of the effect of the pa-
rameter γ in separating pluses from circles in
2D. An invariance to rotations is encoded by
choosing virtual vectors that are rotations of
the training data, each invariant group Sn be-
ing indicated by a dotted line. The gray level
indicates the decision function value and the
white line the decision boundary. Left: Virtual
SVM, Middle: HV-SVM with medium γ RightHV-
SVM with γ close to one.



which, assuming that we are aiming for the same result
as the I-SVM, is not what is required unlessVn is emtpy.
However if we had knownVn a priori and set[B]i,j = 0 if
eitheri ∈ Vn or j ∈ Vn, then the second term in the above
invariance term would equal zero. Thus, had we also mod-
ified the kernel function as per the I-SVM method with in-
variance directions

{∀ (x̃i − x̃j) :
(
i ∈ Vn

) ∨ (
j ∈ Vn

)}
then we would have established once again the correct I-
SVM invariance term forSn. This would need to have been
done for all theSn, but as we do not know theVn a priori
it would be necessary to use for example approach of Algo-
rithm 1, below, for determining which invariance directions
need to be accounted for by the I-SVM kernel function,
rather than by the more efficient HV-SVM bias terms[B]i,j .
In the algorithm, the invariance terms associated with non
support vectors are ignored. Note that it should usually be
possible to perform the retraining with fewer iterations than
the initial pass, by using the previous solution as the starting
point for the optimization.

Algorithm 1 HV-SVM/I-SVM Hybrid

1: W ← ∅
2: [B]i,j ← 0, ∀i, j
3: for all

{
(i, j) :

(
i ∈ W) ∨ (

j ∈ W)}
do

4: assign[B]i,j according to equations (8) and (9)
5: end for
6: Definek by equation (1) using the tangent vectors as-

sociated withW
7: Optimise usingk andB, and letV be the resultant sup-

port vector set
8: R← ⋃

∀n:Sn∩V6=∅ Sn

9: if R ⊆ V ∪W then
10: finish
11: else
12: W ←W ∪ (R− V)
13: Go to line 2
14: end if

5 Experiments

Our tests on real world problems are the subject of on-
going work. In the present section we instead consider
the following toy problem: the data are uniformly dis-
tributed over the interval[−1, 1]2 and the true decision
boundary is a circle centered at the origin, namelyf (x̃) =
sign(||x̃|| − 1/2). The invariance we wish to encode islo-
cal invariance under rotations, and so we derive from each
training vector a single virtual vector by applying a rotation
of 0.5 radians about the origin. A training set of15 points
and test set of2000 points were generated independently
in 100 individual trials. For the kernel function we chose
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Figure 2. Cross validation performance for
the circle toy problem, averaged over 100 tri-
als. The gray-scale indicates mean test er-
ror percentage. The C scale is logarithmic,
and the γ scale is logarithmic with the excep-
tion of the first value which is zero. Note that
γ = 0 is equivalent to the Virtual SVM method,
and that the invariances are enforced more
as γ → 1. Very little performance change is
found by extending the plot to greater C val-
ues.

the second order polynomial kernelk (x̃, ỹ) =
(
x̃>ỹ + 1

)2
.

The results of the experiment are shown in Figure 2, which
indicate that for any given value of the margin softness pa-
rameterC, the more the invariance is enforced (γ → 1)
the better the test set performance becomes. Moreover it
can be seen from the example in Figure 1 that as expected,
the invariance term leads to decision boundaries of a more
circular nature.

6 Conclusion

We have presented a generalisation of the Virtual SVM
in which the support vectors that are invariant transforma-
tions of one another are constrained to have similar decision
function values. We have demonstrated that the method is
superior to the state of the art Virtual SVM in a toy problem
involving invariances under rotations (see Figure 2). More-
over, the algorithm is easy to implement, as the final optimi-
sation problem is very similar to that of the standard SVM,
and incurs no additional computational penalty in compar-
ison with the Virtual SVM. We plan to perform more real-
world tests – since the Virtual SVM represents the state of
the art in digit recognition it seems interesting to apply the



method to this problem.
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