302 research outputs found

    The Global Environment: Opportunities or Constraints?

    Get PDF

    Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?

    Get PDF
    Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics

    Effects of a regenerating matrix on the survival of birds in tropical forest fragments

    Get PDF
    Background Vast areas of lowland neotropical forest have regenerated after initially being cleared for agricultural purposes. The ecological value of regenerating second growth to forest-dwelling birds may largely depend on the age of the forest, associated vegetative structure, and when it is capable of sustaining avian demographics similar to those found in pristine forest. Methods To determine the influence of second growth age on bird demography, we estimated the annual survival of six central Amazonian bird species residing in pristine forest, a single 100 and a single 10 ha forest fragment, taking into consideration age of the surrounding matrix (i.e. regenerating forest adjacent to each fragment) as an explanatory variable. Results Study species exhibited three responses: arboreal, flocking and ant-following insectivores (Willisornis poecilinotus, Thamnomanes ardesiacus and Pithys albifrons) showed declines in survival associated with fragmentation followed by an increase in survival after 5 years of matrix regeneration. Conversely, Percnostola rufifrons, a gap-specialist, showed elevated survival in response to fragmentation followed by a decline after 5 years of regeneration. Lastly, facultative flocking and frugivore species (Glyphorynchus spirurus and Dixiphia pipra, respectively) showed no response to adjacent clearing and subsequent regeneration. Conclusions Our results in association with previous studies confirm that the value of regenerating forest surrounding habitat patches is dependent on two factors: ecological guild of the species in question and second growth age. Given the rapid increase in survival following succession, we suggest that the ecological value of young tropical forest should not be based solely on a contemporary snapshot, but rather, on the future value of mature second growth as well

    Habitat fragmentation and its lasting impact on Earth’s ecosystems

    Get PDF
    We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services

    Effects of a regenerating matrix on the survival of birds in tropical forest fragments

    Get PDF
    Background: Vast areas of lowland neotropical forest have regenerated after initially being cleared for agricultural purposes. The ecological value of regenerating second growth to forest-dwelling birds may largely depend on the age of the forest, associated vegetative structure, and when it is capable of sustaining avian demographics similar to those found in pristine forest. Methods: To determine the influence of second growth age on bird demography, we estimated the annual survival of six central Amazonian bird species residing in pristine forest, a single 100 and a single 10 ha forest fragment, taking into consideration age of the surrounding matrix (i.e. regenerating forest adjacent to each fragment) as an explanatory variable. Results: Study species exhibited three responses: arboreal, flocking and ant-following insectivores (Willisornis poecilinotus, Thamnomanes ardesiacus and Pithys albifrons) showed declines in survival associated with fragmentation followed by an increase in survival after 5 years of matrix regeneration. Conversely, Percnostola rufifrons, a gap-specialist, showed elevated survival in response to fragmentation followed by a decline after 5 years of regeneration. Lastly, facultative flocking and frugivore species (Glyphorynchus spirurus and Dixiphia pipra, respectively) showed no response to adjacent clearing and subsequent regeneration. Conclusions: Our results in association with previous studies confirm that the value of regenerating forest surrounding habitat patches is dependent on two factors: ecological guild of the species in question and second growth age. Given the rapid increase in survival following succession, we suggest that the ecological value of young tropical forest should not be based solely on a contemporary snapshot, but rather, on the future value of mature second growth as well. © 2020 The Author(s)

    Rates of species loss from Amazonian forest fragments

    Get PDF
    In the face of worldwide habitat fragmentation, managers need to devise a time frame for action. We ask how fast do understory bird species disappear from experimentally isolated plots in the Biological Dynamics of Forest Fragments Project, central Amazon, Brazil. Our data consist of mist-net records obtained over a period of 13 years in 11 sites of 1, 10, and 100 hectares. The numbers of captures per species per unit time, analyzed under different simplifying assumptions, reveal a set of species-loss curves. From those declining numbers, we derive a scaling rule for the time it takes to lose half the species in a fragment as a function of its area. A 10-fold decrease in the rate of species loss requires a 1,000-fold increase in area. Fragments of 100 hectares lose one half of their species in < 15 years, too short a time for implementing conservation measures

    Mainstreaming biodiversity : conservation for the twenty-first century

    Get PDF
    CITATION: Redford, K. H. et al. 2015. Mainstreaming biodiversity : conservation for the twenty-first century. Frontiers in Ecology and Evolution, 3:137, doi:10.3389/fevo.2015.00137.The original publication is available at http://journal.frontiersin.org/journal/ecology-and-evolutionInsufficient focused attention has been paid by the conservation community to conservation of biodiversity outside of protected areas. Biodiversity mainstreaming addresses this gap in global conservation practice by “embedding biodiversity considerations into policies, strategies and practices of key public and private actors that impact or rely on biodiversity, so that it is conserved, and sustainably used, both locally and globally” (Huntley and Redford, 2014). Biodiversity mainstreaming is designed to change those policies and practices that influence land uses outside of protected areas as well as to change economic and development decision-making by demonstrating the importance of conserving biodiversity for achieving development outcomes. The practice of mainstreaming is tied to implementation of the Convention on Biological Diversity and is practiced with billions of dollars of investment by development agencies, national government agencies, and the Global Environment Facility (GEF) and its implementing organizations as well as other donors. It is essential for the long-term survival of biodiversity inside and outside protected areas. However, it is virtually unheard of in the main conservation science field. This must change so as to bring careful documentation, analysis, monitoring, publishing, and improvement of practices—all things that conservation science should provide as partners to practitioners of biodiversity mainstreaming. The situation is ripe for informed coordination and consolidation and creation of a science-driven field of biodiversity mainstreaming.http://journal.frontiersin.org/article/10.3389/fevo.2015.00137/fullPublisher's versio

    Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities.

    Get PDF
    The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology
    • …
    corecore