253 research outputs found

    Correspondence from E.B. Lovejoy, August 10, 1862

    Get PDF
    Correspondence from E.B. Lovejoy regarding absent soldiers from Androscoggin Countyhttps://digitalmaine.com/absent_soldiers/1001/thumbnail.jp

    2-Hydroxy-1-naphthaldehyde 2-methylthiosemicarbazone

    Get PDF

    A Bulloch Tapestry

    Get PDF
    The title for this collection was inspired by a poem by Rita Turner Wall. The poem is included in this book, along with articles by C.D. Sheley, Daniel Good, James D. Morgan, Gregory Alan Baker, Paul T. Marlott, and Charles Bonds, David R. Williams. Topics covered by these articles are the history of the Bill Olliff House; the historical geography of Arcola, New Hope, and Denmark, Georgia; the lives of Luetta Leverette Moore and Amanda Love Smith; and the letters of Confederate soldier Asbury Wesley Hodges. Also included are letters to Union soldier Perry Lovejoy, submitted by Bill Lovejoy and transcribed by Evelyn Mabry. The index to this collection was compiled by Julius Ariail.https://digitalcommons.georgiasouthern.edu/bchs-pubs/1001/thumbnail.jp

    Buckling Design and Imperfection Sensitivity of Sandwich Composite Launch-Vehicle Shell Structures

    Get PDF
    Composite materials are increasingly being considered and used for launch-vehicle structures. For shell structures, such as interstages, skirts, and shrouds, honeycomb-core sandwich composites are often selected for their structural efficiency. Therefore, it is becoming increasingly important to understand the structural response, including buckling, of sandwich composite shell structures. Additionally, small geometric imperfections can significantly influence the buckling response, including considerably reducing the buckling load, of shell structures. Thus, both the response of the theoretically perfect structure and the buckling imperfection sensitivity must be considered during the design of such structures. To address the latter, empirically derived design factors, called buckling knockdown factors (KDFs), were developed by NASA in the 1960s to account for this buckling imperfection sensitivity during design. However, most of the test-article designs used in the development of these recommendations are not relevant to modern launch-vehicle constructions and material systems, and in particular, no composite test articles were considered. Herein, a two-part study on composite sandwich shells to (1) examine the relationship between the buckling knockdown factor and the areal mass of optimized designs, and (2) to interrogate the imperfection sensitivity of those optimized designs is presented. Four structures from recent NASA launch-vehicle development activities are considered. First, designs optimized for both strength and stability were generated for each of these structures using design optimization software and a range of buckling knockdown factors; it was found that the designed areal masses varied by between 6.1% and 19.6% over knockdown factors ranging from 0.6 to 0.9. Next, the buckling imperfection sensitivity of the optimized designs is explored using nonlinear finite-element analysis and the as-measured shape of a large-scale composite cylindrical shell. When compared with the current buckling design recommendations, the results suggest that the current recommendations are overly conservative and that the development of new recommendations could reduce the acreage areal mass of many composite sandwich shell designs by between 4% and 19%, depending on the structure

    Label-Free Fluorescent Poly(amidoamine) Dendrimer for Traceable and Controlled Drug Delivery

    Get PDF
    Poly(amidoamine) dendrimer (PAMAM) is well-known for its high efficiency as a drug delivery vehicle. However, the intrinsic cytotoxicity and lack of a detectable signal to facilitate tracking have impeded its practical applications. Herein, we have developed a novel label-free fluorescent and biocompatible PAMAM derivative by simple surface modification of PAMAM using acetaldehyde. The modified PAMAM possessed a strong green fluorescence, which was generated by the C=N bonds of the resulting Schiff Bases via n-?∗ transition, while the intrinsic cytotoxicity of PAMAM was simultaneously ameliorated. Through further PEGylation, the fluorescent PAMAM demonstrated excellent intracellular tracking in human melanoma SKMEL28 cells. In addition, our PEGylated fluorescent PAMAM derivative achieved enhanced loading and delivery efficiency of the anticancer drug doxorubicin (DOX) compared to the original PAMAM. Importantly, the accelerated kinetics of DOX-encapsulated fluorescent PAMAM nanocomposites in an acidic environment facilitated intracellular drug release, which demonstrated comparable cytotoxicity to that of the free-form doxorubicin hydrochloride (DOX·HCl) against melanoma cells. Overall, our label free fluorescent PAMAM derivative offers a new opportunity of traceable and controlled delivery for DOX and other drugs of potential clinical importance

    Serum hepcidin levels in cognitively normal older adults with high neocortical amyloid-beta load

    Get PDF
    Background/Objective: Hepcidin, an iron-regulating hormone, suppresses the release of iron by binding to the iron exporter protein, ferroportin, resulting in intracellular iron accumulation. Given that iron dyshomeostasis has been observed in Alzheimer’s disease (AD) together with elevated serum hepcidin levels, the current study examined whether elevated serum hepcidin levels are an early event in AD pathogenesis by measuring the hormone in cognitively normal older adults at risk of AD, based on high neocortical amyloid-β load (NAL). Methods: Serum hepcidin levels in cognitively normal participants (n = 100) aged between 65–90 years were measured using ELISA. To evaluate NAL, all participants underwent 18F-florbetaben positron emission tomography. A standard uptake value ratio (SUVR) \u3c 1.35 was classified as low NAL (n = 65) and ≥ 1.35 (n = 35) was classified as high NAL. Results: Serum hepcidin was significantly higher in participants with high NAL compared to those with low NAL before and after adjusting for covariates: age, gender, and APOE ɛ4 carriage (p  \u3c  0.05). A receiver operating characteristic curve based on a logistic regression of the same covariates, the base model, distinguished high from low NAL (area under the curve, AUC  =  0.766), but was outperformed when serum hepcidin was added to the base model (AUC = 0.794) and further improved with plasma Aβ42/40 ratio (AUC = 0.829). Conclusion: The present findings indicate that serum hepcidin is increased in individuals at risk for AD and contribute to the body of evidence supporting iron dyshomeostasis as an early event of AD. Further, hepcidin may add value to a panel of markers that contribute toward identifying individuals at risk of AD; however, further validation studies are required

    Serum hepcidin levels in cognitively normal older adults with high neocortical amyloid-beta load

    Get PDF
    Background/Objective: Hepcidin, an iron-regulating hormone, suppresses the release of iron by binding to the iron exporter protein, ferroportin, resulting in intracellular iron accumulation. Given that iron dyshomeostasis has been observed in Alzheimer’s disease (AD) together with elevated serum hepcidin levels, the current study examined whether elevated serum hepcidin levels are an early event in AD pathogenesis by measuring the hormone in cognitively normal older adults at risk of AD, based on high neocortical amyloid-β load (NAL). Methods: Serum hepcidin levels in cognitively normal participants (n = 100) aged between 65–90 years were measured using ELISA. To evaluate NAL, all participants underwent 18F-florbetaben positron emission tomography. A standard uptake value ratio (SUVR) \u3c 1.35 was classified as low NAL (n = 65) and ≥ 1.35 (n = 35) was classified as high NAL. Results: Serum hepcidin was significantly higher in participants with high NAL compared to those with low NAL before and after adjusting for covariates: age, gender, and APOE ɛ4 carriage (p  \u3c  0.05). A receiver operating characteristic curve based on a logistic regression of the same covariates, the base model, distinguished high from low NAL (area under the curve, AUC  =  0.766), but was outperformed when serum hepcidin was added to the base model (AUC = 0.794) and further improved with plasma Aβ42/40 ratio (AUC = 0.829). Conclusion: The present findings indicate that serum hepcidin is increased in individuals at risk for AD and contribute to the body of evidence supporting iron dyshomeostasis as an early event of AD. Further, hepcidin may add value to a panel of markers that contribute toward identifying individuals at risk of AD; however, further validation studies are required

    Nonlinear Measures for Characterizing Rough Surface Morphologies

    Full text link
    We develop a new approach to characterizing the morphology of rough surfaces based on the analysis of the scaling properties of contour loops, i.e. loops of constant height. Given a height profile of the surface we perform independent measurements of the fractal dimension of contour loops, and the exponent that characterizes their size distribution. Scaling formulas are derived and used to relate these two geometrical exponents to the roughness exponent of a self-affine surface, thus providing independent measurements of this important quantity. Furthermore, we define the scale dependent curvature and demonstrate that by measuring its third moment departures of the height fluctuations from Gaussian behavior can be ascertained. These nonlinear measures are used to characterize the morphology of computer generated Gaussian rough surfaces, surfaces obtained in numerical simulations of a simple growth model, and surfaces observed by scanning-tunneling-microscopes. For experimentally realized surfaces the self-affine scaling is cut off by a correlation length, and we generalize our theory of contour loops to take this into account.Comment: 39 pages and 18 figures included; comments to [email protected]

    Alterations in serum kynurenine pathway metabolites in individuals with high neocortical amyloid-β load: A pilot study

    Get PDF
    The kynurenine pathway (KP) is dysregulated in neuroinflammatory diseases including Alzheimer\u27s disease (AD), however has not been investigated in preclinical AD characterized by high neocortical amyloid-β load (NAL), prior to cognitive impairment. Serum KP metabolites were measured in the cognitively normal KARVIAH cohort. Participants, aged 65-90 y, were categorised into NAL+ (n = 35) and NAL- (n = 65) using a standard uptake value ratio cut-off = 1.35. Employing linear models adjusting for age and APOEϵ4, higher kynurenine and anthranilic acid (AA) in NAL+ versus NAL- participants were observed in females (kynurenine, p = 0.004; AA, p = 0.001) but not males (NALxGender, p = 0.001, 0.038, respectively). To evaluate the predictive potential of kynurenine or/and AA for NAL+ in females, logistic regressions with NAL+/- as outcome were carried out. After age and APOEϵ4 adjustment, kynurenine and AA were individually and jointly significant predictors (p = 0.007, 0.005, 0.0004, respectively). Areas under the receiver operating characteristic curves were 0.794 using age and APOEϵ4 as predictors, and 0.844, 0.866 and 0.871 when kynurenine, AA and both were added. Findings from the current study exhibit increased KP activation in NAL+ females and highlight the predictive potential of KP metabolites, AA and kynurenine, for NAL+. Additionally, the current study also provides insight into he influence of gender in AD pathogenesi
    • …
    corecore