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Abstract.
Background/Objective: Hepcidin, an iron-regulating hormone, suppresses the release of iron by binding to the iron exporter
protein, ferroportin, resulting in intracellular iron accumulation. Given that iron dyshomeostasis has been observed in
Alzheimer’s disease (AD) together with elevated serum hepcidin levels, the current study examined whether elevated serum
hepcidin levels are an early event in AD pathogenesis by measuring the hormone in cognitively normal older adults at risk
of AD, based on high neocortical amyloid-� load (NAL).
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Methods: Serum hepcidin levels in cognitively normal participants (n = 100) aged between 65–90 years were measured using
ELISA. To evaluate NAL, all participants underwent 18F-florbetaben positron emission tomography. A standard uptake value
ratio (SUVR)<1.35 was classified as low NAL (n = 65) and ≥1.35 (n = 35) was classified as high NAL.
Results: Serum hepcidin was significantly higher in participants with high NAL compared to those with low NAL before
and after adjusting for covariates: age, gender, and APOE �4 carriage (p < 0.05). A receiver operating characteristic curve
based on a logistic regression of the same covariates, the base model, distinguished high from low NAL (area under the
curve, AUC = 0.766), but was outperformed when serum hepcidin was added to the base model (AUC = 0.794) and further
improved with plasma A�42/40 ratio (AUC = 0.829).
Conclusion: The present findings indicate that serum hepcidin is increased in individuals at risk for AD and contribute to
the body of evidence supporting iron dyshomeostasis as an early event of AD. Further, hepcidin may add value to a panel of
markers that contribute toward identifying individuals at risk of AD; however, further validation studies are required.

Keywords: Alzheimer’s disease, amyloid deposits, hepcidin, iron dyshomeostasis, positron emission tomography

INTRODUCTION

There is increasing evidence of a disruption in iron
homeostasis in the brain in Alzheimer’s disease (AD)
pathogenesis [1–3]. This iron dysregulation is also
reflected in the blood wherein altered levels of the
iron storage and transfer protein (ferritin and trans-
ferrin) have been observed in AD patients compared
with healthy controls [4]. Interestingly, higher serum
ferritin has also been reported in cognitively normal
individuals at risk of AD, based on high neocortical
amyloid-� load (NAL) [5–7].

Hepcidin, a key protein involved in iron home-
ostasis, is an iron-regulating hormone. Hepcidin
suppresses the release of iron by binding and internal-
izing the iron exporter protein, ferroportin, resulting
in intracellular iron accumulation. Hepcidin levels
have been reported to be lower in AD brain tissue
compared to age-matched healthy adults [8]. Further,
lower hepcidin levels have also been reported in AD
transgenic mouse (Tg2576) brains compared to wild
type brains [8]. In contrast, in the blood, hepcidin
levels are significantly higher in AD patients com-
pared to control participants [9–11]. Furthermore,
blood hepcidin levels have also been reported to have
a positive association with AD severity [9, 10].

The current study investigated whether elevated
hepcidin levels in the blood precede the onset of
the clinical symptoms of AD by measuring this
iron-regulating hormone in cognitively normal older
adults at risk of AD. Given that the onset of
abnormal NAL build-up, assessed using positron
emission tomography (PET) occurs approximately
two decades prior to the clinical manifestation of AD,
is a prodromal feature and biomarker of AD [12],
serum hepcidin levels were compared between cog-
nitively normal older adults with high NAL and low
NAL. Further, the current study also evaluated if hep-

cidin has potential to distinguish between individuals
with high NAL and low NAL.

MATERIALS AND METHODS

Participants

All study participants were from the Kerr Angli-
can Retirement Village Initiative in Ageing Health
(KARVIAH) cohort. All participants met the screen-
ing (inclusion and exclusion) criteria. Briefly, the
inclusion criteria required volunteers to be within
an age range of 65–90 years, have good general
health and have no known significant cerebral vas-
cular disease based on their medical history, be fluent
in English, have adequate/corrected vision and hear-
ing to enable testing, and have no objective memory
impairment as determined by a Montreal Cogni-
tive Assessment (MoCA) score ≥26. MoCA scores
between 18–25 were assessed on a case by case
basis by the study neuropsychologist following score
stratification according to age and education [13].
The exclusion criteria included diagnosis of demen-
tia based on the revised criteria from the National
Institute on Aging - Alzheimer’s Association [14],
presence of acute functional psychiatric disorder, his-
tory of stroke, depression (based on the Depression,
Anxiety, Stress Scales) and uncontrolled hyper-
tension (systolic BP > 170 or diastolic BP > 100).
One hundred and five participants out of the 134
volunteers meeting the inclusion/exclusion crite-
ria underwent blood collection, neuroimaging, and
neuropsychometric evaluation, while the remaining
volunteers either declined neuroimaging or withdrew
from the study. One hundred participants of the above
105 participants were considered as cognitively nor-
mal based on their Mini-Mental State Examination
score (MMSE ≥ 26) for the current study. All vol-
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unteers provided written informed consent prior to
participation and the Bellberry Human Research
Ethics Committee, Australia, and Macquarie Uni-
versity Human Research Ethics Committee provided
approval for the study.

Assessment of neocortical amyloid-β load via
PET

Study participants underwent PET imaging using
ligand 18F-florbetaben (FBB) and magnetic reso-
nance imaging (MRI) at Macquarie Medical Imaging
in Sydney within a time frame of three months
from blood collection. For PET, an intravenous bolus
of FBB was slowly administered over 30 s, while
participants were in a rested position and images
were acquired over a 20 min scan, in 5 min acqui-
sitions, beginning 50 min post injection. Neocortical
amyloid-� load was calculated as the mean SUVR of
the frontal, superior parietal, lateral temporal, lateral
occipital, and anterior and posterior cingulate regions
using image processing software, CapAIBL [15, 16].
Using a SUVR cut-off score of 1.35 (derived from a
hierarchical cluster analysis), participants were cate-
gorized into low NAL (SUVR < 1.35, n = 65) and high
NAL (SUVR ≥ 1.35, n = 35) [17]. Ninety-six of the
100 participants within the current study passed all
standard MRI inclusion/exclusion criteria and under-
went MRI as described previously using a General
Electric 3Tesla scanner (Model 750W) [18]. Hip-
pocampal volume was calculated from the images
acquired and was normalized to the total intracra-
nial volume comprising the cerebrospinal fluid, grey
matter, and white matter.

Blood collection and APOE genotyping

All participants fasted for a minimum of 10 h
overnight prior to blood withdrawal. The blood drawn
was fractionated as described previously by Ellis
et al. [19], and stored at –80◦C. Apolipoprotein
E (APOE) genotype was determined from purified
genomic DNA extracted from 0.5 ml whole blood as
previously described [5].

Measurement of serum hepcidin

Serum samples stored at –80◦C were thawed
on ice prior to using the Hepcidin-25 (bioactive)
DRG ELISA kits (DRG International, Springfield,
NJ, USA) to measure serum hepcidin levels. All
reagents were prepared according to the manufac-

turer’s instructions and the assay was run according
to the manufacturer’s instructions. Briefly, 20 �L of
each standard, control and test sample were dispensed
into appropriate wells of a pre-coated antibody plate
(in duplicates) following which 50 �L of the enzyme
conjugate was dispensed into each well and mixed
thoroughly for 10 s. The plate was then incubated at
room temperature for 60 min, following which the
contents of the wells were briskly shaken out and
the wells were washed with wash solution. Subse-
quently, 100 �L of enzyme complex was dispensed
into each well and incubated for 30 min at room tem-
perature. Following incubation, the contents of the
wells were emptied and washed with wash solution.
The substrate solution was added to each well and
incubated for 20 min at room temperature following
which the stop solution was added to stop the enzy-
matic reaction and the plate was read at 450 ± 10 nm.
The intensity of the color developed after incuba-
tion was inversely proportional to the concentration
of hepcidin-25 in the patient sample. The detection
range of the assay was 0.153 ng/mL–81 ng/mL. The
limit of quantification (LoQ) was 1.149 ng/mL and
coefficients of variation (CVs) obtained were < 10%.

Measurement of serum C-reactive protein,
ferritin, iron, transferrin, and ceruloplasmin
levels and plasma Aβ40 and Aβ42

Serum C-reactive protein (CRP) levels were
measured employing the Siemens ADVIA® wide
range C-reactive protein assay (wr-CRP) at Laverty
Pathology, New South Wales (NSW), Australia.
Serum ferritin levels were measured using a
sandwich immunoassay utilizing direct chemilu-
minometric technology (ADVIA Centaur® Ferritin
assay, Siemens Healthcare and Diagnostics) at
Laverty Pathology, NSW, Australia. Serum iron and
transferrin levels were measured using colorimet-
ric and immunoturbidimetric methods, respectively,
using the ADVIA® Chemistry systems, Siemens
Healthcare Diagnostics at Laverty Pathology, NSW,
Australia. Ceruloplasmin levels were measured
immunoturbidimetrically on the Roche cobas® c
system at Laverty Pathology, NSW, Australia. The
ultra-sensitive single molecule array (Simoa, Quan-
terix) platform was employed to measure plasma
A�40 and A�42 concentrations as described previ-
ously [20]. Ninety-five of the 100 participants from
the current study had reliable data for both plasma
A�40 and A�42 and were employed within the current
study.
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Dietary iron intake

Dietary iron intake was investigated to establish
whether diet attributed to the comparisons of the iron-
related proteins being made between the low and
high NAL groups, employing data from the Cancer
Council of Victoria Food Frequency Questionnaire
(CCVFFQ) [21]. The CCVFFQ is a paper-based
semi-quantitative seventy-four item questionnaire.
The CCVFFQ was optically scanned to obtain nutri-
ent intakes in gram/day. Participants filled out the
CCVFFQ when they visited the research center for
their assessment.

Neuropsychological testing

Study participants underwent a comprehensive
battery of neuropsychological tests with MMSE
scores utilized as the primary measure for global cog-
nitive ability assessment within the current study [22].
The scores obtained from a MMSE can fall within a
range of 0–30, indicating severe impairment (0) to no
impairment (30).

Statistical analyses

Descriptive statistics including means and stan-
dard deviations were calculated for high and low
NAL groups. Chi-square tests were employed to com-
pare gender and APOE �4 carrier status between
high and low NAL groups. Response variables were
log transformed as necessary to better approximate
normality and variance homogeneity. Linear mod-
els were employed to compare serum hepcidin levels

between high and low NAL groups, with and without
adjusting for covariates age, gender, APOE �4 carrier
status, and CRP. Logistic regression with high/low
NAL as response was used to evaluate predictive
models. Spearman’s (rs) correlation coefficient was
employed for all continuous variable correlations.
Within the current study, p < 0.05 was considered sig-
nificant for all analyses carried out. All analyses were
carried out using IBM® SPSS® Version 23, while
receiver operating characteristic (ROC) curves were
generated using the package Deducer on R (version
3.2.5).

RESULTS

The study cohort characteristics including par-
ticipant demographics, APOE �4 carriage, MMSE
scores, hippocampal volume, and NAL, are presented
in Table 1. The frequency of APOE �4 carriers was
significantly higher in participants with high NAL
compared to those with low NAL (p < 0.0001), as
expected [23]. No statistically significant differences
were observed in age, gender, MMSE scores, and hip-
pocampal volume between the high NAL and low
NAL groups.

Hepcidin levels were significantly higher
(∼33%, p = 0.036) in participants with high NAL
(mean ± SD:30.49 ± 19.34 �g/L) compared to those
with low NAL (22.88 ± 15.72 �g/L) (Fig. 1). This
observation remained significant after adjusting for
the AD risk factors, age, gender, and APOE �4
carrier status, as covariates (p = 0.018) and continued
to remain significant after adjusting for the inflam-

Table 1
Characteristics of study participants

Low NAL (n = 65) High NAL (n = 35) p

Gender (M/F) 19/46 13/22 0.419
Age (y, mean ± SD) 77.62 ± 5.56 79.23 ± 5.38 0.165
APOE �4 carriers % (n) 7.69 (5) 45.71 (16) <0.0001
APOE �2 carriers % (n) 21.54 (14) 14.29 (5) 0.378
MMSE (mean ± SD) 28.51 ± 1.16 28.80 ± 1.11 0.225
MoCA (mean ± SD) 27.43 ± 1.67 27.03 ± 1.92 0.278
HV% (left; right lobes, mean ± SD, n Low 0.195 ± 0.0201; 0.194 ± 0.0197; 0.805;
NAL = 64, n high NAL = 32) 0.199 ± 0.0214 0.200 ± 0.0186 0.891
NAL (mean ± SD) 1.16 ± 0.09 1.71 ± 0.26 –
Plasma A�42/40 (mean ± SD, n Low 0.052 ± 0.008 0.047 ± 0.005 0.004†
NAL = 63, n high NAL = 32)

Baseline characteristics including gender, age, APOE �4/�2 carrier status, Mini-Mental State Examination (MMSE) scores, Montreal Cog-
nitive Assessment (MoCA) scores (adjusted for education), hippocampal volume (HV; normalized by intracranial volume), and neocortical
amyloid-� load (NAL; represented by the standard uptake value ratio (SUVR) of the ligand 18F-florbetaben in the neocortical region normal-
ized with that in the cerebellum) compared between participants with low NAL (SUVR < 1.35) and high NAL (SUVR ≥ 1.35) are presented.
Additionally, plasma A�42/40 ratios are also presented. †indicates p-values obtained from variables transformed to the logarithmic scale for
analyses. Chi-square tests or linear models were employed, as appropriate. p < 0.05 was considered as significant.
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Fig. 1. Comparison of serum hepcidin and other iron related proteins between participants with low and high NAL. A) Serum hepcidin (n
low NAL = 65, n high NAL = 35), B) serum ferritin (n low NAL = 64, n high NAL = 34), C) serum iron (n low NAL = 64, n high NAL = 35),
D) transferrin (n low NAL = 64, n high NAL = 35), E) transferrin saturation% (n low NAL = 64, n high NAL = 35), and F) ceruloplasmin (n
low NAL = 63, n high NAL = 35) were compared between participants with high NAL and low NAL. Serum hepcidin (p = 0.036) and ferritin
(p = 0.013) were significantly higher in high NAL compared to low NAL, while the other measures were non-significant (p > 0.05). Error
bars represent standard deviation and line segments represent the mean. *represents p < 0.05. NAL, neocortical amyloid-� load.

mation marker, CRP (p = 0.029). Additionally, serum
ferritin concentrations were significantly higher in
individuals with high NAL compared to low NAL,
while no significant differences were observed in
serum iron and other iron related measures (trans-
ferrin, transferrin saturation, and ceruloplasmin) in
individuals with high NAL compared to those with
low NAL (Table 2) as observed previously [5].

Further, to explore whether dietary iron intake
directly attributed to the observations in the present
study, we assessed the dietary intake of iron
between low NAL and high NAL participants,
employing data from the CCVFFQ. However,
no significant difference was observed in the
dietary intake of iron between the two groups,
before (mean ± SD: low NAL = 11.8 ± 3.9 mg/day;
high NAL = 12.3 ± 4.3 mg/day; p = 0.536) and after
adjusting for covariates age, gender, and APOE �4
allele status (p = 0.573).

On investigating the association between hep-
cidin and AD risk factors, no significant asso-
ciation was observed between serum hepcidin
levels and age (rs = 0.022, p = 0.827), APOE
�4 carriage (carriers (mean ± SD):26.25 ± 17.19;
non-carriers: 25.36 ± 17.52, p = 0.836), or gen-
der (males (mean ± SD):22.54 ± 17.36; females:
26.95 ± 17.32, p = 0.238).

Further, serum hepcidin levels correlated with
serum iron levels (rs = 0.228, p = 0.023). Serum
hepcidin levels also correlated with serum fer-
ritin (rs = 0.731, p < 0.0001), serum transferrin
(rs = –0.425, p < 0.0001), saturated transferrin
(rs = 0.355, p < 0.0005), and inflammatory protein,
CRP (rs = 0.2, p = 0.046) (Fig. 2). Further, a trend
of association was observed between hepcidin and
ceruloplasmin (rs = 0.191, p = 0.059). After stratify-
ing participants by NAL status, ferritin, transferrin,
and saturated transferrin continued to significantly
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Table 2
Comparison of serum iron related proteins between participants with low and high NAL

Low NAL High NAL p pa pb

Serum hepcidin (g/L) 22.88 ± 15.72 30.49 ± 19.34 0.036 0.018 0.029
Serum ferritin (�g/L, n Low NAL = 64, n high NAL = 34) 115.53 ± 86.73 179.65 ± 117.97 0.013† 0.023† 0.032†
Serum iron (�mol/L, n Low NAL = 64, n high NAL = 35) 17.31 ± 5.09 16.51 ± 4.82 0.453 0.868 0.777
Serum transferrin (�mol/L, n Low NAL = 64, n high NAL = 35) 34.43 ± 6.06 32.71 ± 6.01 0.181 0.128 0.155
Transferrin saturation (%, n Low NAL = 64, n high NAL = 35) 25.73 ± 7.88 26.86 ± 9.08 0.522 0.173 0.156
Ceruloplasmin (g/L, n Low NAL = 63, n high NAL = 35) 0.247 ± 0.048 0.246 ± .046 0.932 0.769 0.973

Concentrations were compared between study participants with low and high neocortical amyloid-� load (NAL) represented by the standard
uptake value ratio (SUVR) of the ligand 18F-Florbetaben in the neocortical region normalized with that in the cerebellum. Low NAL (n = 65,
unless mentioned otherwise) was defined as SUVR < 1.35 while high NAL (n = 35, unless mentioned otherwise) was defined as SUVR ≥ 1.35.
†indicates p-values obtained from variables transformed to the logarithmic scale for analyses. pa values have been adjusted for age, gender,
and APOE �4 status, pb values have been adjusted for age, gender, APOE �4 status, and C-reactive protein (CRP). p < 0.05 was considered
as significant. Data are presented in mean ± SD.

Fig. 2. Association of serum hepcidin with iron, iron related proteins, and CRP. Serum hepcidin levels correlated with levels of A) serum
iron (n = 99), B) serum ferritin (n = 98), C) serum transferrin (n = 99), D) transferrin saturation% (n = 99), and E) C-reactive protein (n = 100),
as determined using Spearman’s correlation coefficient (rs).

correlate with hepcidin in both low and high NAL
participants. However, serum iron, ceruloplasmin,
and CRP only correlated significantly with hepcidin
in the low NAL participants (Table 3).

To evaluate the potential of serum hepcidin
as a biomarker to distinguish between low and
high NAL, receiver operating characteristic (ROC)
curves were generated using logistic regressions. A
‘base’ model incorporating the major risk factors
for AD (age, APOE �4 allele status, and gen-
der) was generated, to which another promising
blood marker, plasma A�42/40 ratio [20, 24] or
(/and) serum hepcidin was (were) added such that a
‘base + plasma A�42/40’ model, a ‘base + serum hep-
cidin’ model and a ‘base + plasma A�42/40 + serum

hepcidin’ model were generated. The area under the
curves (AUCs) of the ‘base + plasma A�42/40’ model
(AUC = .776, 78% sensitivity, 63.5% specificity), the
‘base + serum hepcidin’ model (AUC = .794, 78%
sensitivity, 65.1% specificity) and the ‘base + plasma
A�42/40 + serum hepcidin’ model (AUC = .829, 78%
sensitivity, 69.8% specificity) were observed to
outperform the ‘base’ model (AUC = .766, 78% sen-
sitivity, 61.9% specificity) in distinguishing between
high NAL and low NAL (Fig. 3).

DISCUSSION

Observations from the current study indicate
that serum hepcidin concentration is increased in
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Table 3
Association of serum hepcidin with serum iron, iron related proteins, and C-reactive protein

All participants Low NAL High NAL
rs p rs p rs p

Iron 0.228 0.023 0.252 0.045 0.271 0.115
Ferritin 0.731 <0.0001 0.686 <0.0001 0.731 <0.0001
Transferrin –0.425 <0.0001 –0.331 0.008 –0.507 0.002
Transferrin saturation 0.355 <0.0005 0.326 0.009 0.415 0.013
Ceruloplasmin 0.191 0.059 0.333 0.008 –0.033 0.851
C-reactive protein 0.200 0.046 0.247 0.047 0.258 0.134

Correlations between serum hepcidin levels and iron, ferritin, transferrin, saturated transferrin, and ceruloplasmin levels were examined in
all participants and after stratification based on the neocortical amyloid-� load (NAL) status using Spearman’s correlation coefficient (rs).
p < 0.05 was considered as significant.

Fig. 3. Receiver operating characteristic (ROC) curves for the prediction of high neocortical amyloid-� load. ROCs were created for (A)
a ‘base model’ comprising risk factors for AD, namely age, gender, and APOE �4 allele status (BM), (B) BM + plasma A�42/40, (C)
BM + hepcidin, and (D) BM + plasma A�42/40 ratio + hepcidin. The BM was outperformed by models B, C, and D. Logistic regression
models were employed to perform the analyses. All models were generated using data from the 95 participants that had data for plasma
A�42/40 (Low NAL = 63, High NAL = 32).
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cognitively normal older adults at risk for AD, char-
acterized by high NAL, prior to hippocampal atrophy.
Our findings of increased serum hepcidin in indi-
viduals with high NAL build on the earlier work of
Sternberg and colleagues and Kweon and colleagues
who observed increased serum hepcidin levels in
clinically diagnosed AD patients, by demonstrating
that changes in this hormone is an early event in
the pathogenesis of AD [9, 10]. Additionally, the
observations in the present study did not appear to
be traceable to the participants’ dietary intake of
iron as assessed from the CCVFFQ, suggesting the
observations were associated with iron dyshome-
ostasis within the asymptomatic at-risk state of the
disease, rather than dietary iron intake. However,
it is acknowledged that data from food frequency
questionnaires do not necessarily reflect an accu-
rate evaluation of the dietary intake of iron but
rather serve as a suitable reflection of exposure
to certain food and nutrient types over a period
of time. Further, within the current study we also
observed that serum hepcidin along with the AD
risk factors age, APOE �4 status, gender, and plasma
A�42/40 ratios (a blood biomarker reflecting brain
amyloid status), distinguished between low NAL and
high NAL (AUC = .83); however, it is acknowledged
that hepcidin’s contribution alone is relatively mod-
est.

Hepcidin regulates blood iron levels by inhibit-
ing the uptake of dietary iron from the intestine.

It also has roles in preventing the release of iron
from recycled red blood cells in macrophages as
well as preventing the release into the circulation
of stored iron from hepatocytes. The mechanisms
by which hepcidin inhibits iron entry into circula-
tion, from macrophages and other iron exporting
cells, involves binding to the iron exporter protein,
ferroportin, followed by internalization and degra-
dation of the hepcidin-ferroportin complex [3, 25,
26]. Studies have also suggested that the primary
mechanism by which hepcidin inhibits iron entry
from enterocytes into circulation, involves decreas-
ing iron absorption into the enterocytes by promoting
degradation and internalization of the apical diva-
lent metal transporter-1 (DMT1), the protein carrying
Fe2+ from the intestinal lumen into the enterocytes
prior to release into circulation by ferroportin [27–29]
(Fig. 4).

We posit that the higher circulating hepcidin lev-
els observed in individuals with high NAL could be
attributed to the iron overload observed in AD patho-
genesis [5, 30]. In response to iron loading in AD
pathogenesis, we suggest that the liver secretes hep-
cidin into circulation and this circulating hepcidin
may cross the blood-brain barrier to suppress ferro-
portin function. This may also explain the observation
of lower brain hepcidin and ferroportin levels in AD
observed by Raha and colleagues [8], as hepcidin
binds to ferroportin (located on the cell membrane)
following degradation of the hepcidin-ferroportin

Fig. 4. Regulation of blood iron levels by hepcidin. Dietary iron in the lumen of duodenum is present in the form of heme and ferric ions
(Fe3+). While heme is absorbed into enterocytes via the heme carrier protein 1 (HCP1), ferric ions are first converted to ferrous ions (Fe2+) by
duodenal Cytochrome B (DCytB) to enable binding to the divalent metal transporter 1 (DMT1) thereby facilitating transport into enterocytes.
Ferrous ions transported by DMT1 and the ferrous ions generated from heme (via heme oxygenase 1, HO) contribute to the labile iron pool
(LIP). Ferrous ions in the LIP are then either stored in the iron storage protein, ferritin, or released into the blood via ferroportin (FPN) present
on the basolateral membrane of the enterocyte with subsequent conversion to ferric ions via hephaestin (on the membrane) or ceruloplasmin
(in the blood). These ferric ions can then be loaded into the iron carrier protein, transferrin (Tf), which bind to transferrin receptors (Tf-R)
on tissue cell membranes resulting in iron transport to different tissues. When iron load in the tissue is high, hepcidin is released resulting
in the internalization and degradation of the hepcidin-ferroportin complex (or hepcidin-DMT1 complex). This prevents further iron release
by FPN into the blood or dietary iron absorption by enterocytes via DMT1, respectively. Hepcidin also prevents the release of iron from
recycled red blood cells in macrophages. Alternatively, when iron load is low, the secretion of hepcidin is inhibited so that FPN can release
iron into the blood.
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complex to downregulate ferroportin expression. Fur-
ther, in support of our hypothesis, there is evidence
suggesting that at least a proportion of the hepcidin
in the brain may be originating outside the brain [31].
Additionally, our observations within the current
study also fall in line with the “hepcidin-ferroportin
neuronal iron overload” hypothesis suggested by
Hofer and Perry [32].

Within the current study, a positive association
between serum hepcidin and ferritin, and an inverse
association between serum hepcidin and transferrin
was observed in both low NAL and high NAL partic-
ipants. However, significant associations of hepcidin
with iron and ceruloplasmin (a ferroxidase that pro-
motes iron loading into transferrin [33]), were only
observed in individuals with low NAL. These asso-
ciations in low NAL participants or healthy control
individuals, as illustrated in Figure 4, could be
attributed to the physiological role of hepcidin in
maintaining serum iron levels, and the role of ceru-
loplasmin in promoting iron loading into transferrin
[33], thereby influencing tissue iron load, and in turn,
triggering optimal hepcidin secretion via this feed-
back mechanism to maintain iron homeostasis. The
absence of a significant association of hepcidin with
serum iron and ceruloplasmin in the high NAL group
may therefore reflect a disruption in iron homeostasis.

Additionally, a significant association of hep-
cidin with the inflammation marker, CRP, was
only observed in individuals at no apparent risk
of AD or with low NAL. These observations are
consistent with a study showing increasing serum
hepcidin concentrations with increasing CRP in
a general population [34]. While serum hepcidin
levels were observed to be associated with inflam-
mation in individuals with low NAL, this was not
the case in individuals with high NAL (or at risk
for AD), wherein no significant association was
observed between serum hepcidin and the inflam-
mation marker, CRP. Moreover, hepcidin levels
remained significantly higher in high NAL after
adjusting for CRP, indicating that the increased hep-
cidin levels in high NAL observed in the current study
are potentially independent of systemic inflamma-
tion.

It is acknowledged that the current study has its
limitations given its modest sample size and cross-
sectional design. Longitudinal studies will provide
more insight into the role of hepcidin across the
disease pathogenesis trajectory. Further, within the
current study, CRP was employed as a marker of
inflammation, as this data was available to us. While

interleukin-6 (IL-6) induces hepcidin through the
induction of the signal transducer and activator of
transcription 3 (STAT3) pathway [35], IL-6 has been
reported to control CRP expression [36] encouraging
the use of CRP as a suitable proxy for IL-6 within
the present study. However, further studies using IL-
6 are required to confirm whether hepcidin alterations
in AD pathogenesis are independent of inflammation.

To conclude, serum hepcidin is higher in older
adults with high NAL, prior to cognitive decline and
hippocampal atrophy. The observation of increased
hepcidin concentrations in individuals at risk for AD
contributes to the body of evidence supporting iron
dyshomeostasis as an early event of AD. Dysregu-
lation of iron homeostasis point to the importance
of investigating related biological pathways to better
understand the molecular pathology of AD. Addi-
tionally, our findings indicate that hepcidin may add
value to a panel of markers that contribute toward
differentiating individuals at risk of AD. However,
it is acknowledged that further validation studies are
required. Our findings clearly highlight that a dis-
ruption in iron homeostasis in the blood is an early
feature in the pathogenesis of AD.
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