Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

2-Hydroxy-1-naphthaldehyde 2-methylthiosemicarbazone

David B. Lovejoy, ${ }^{\text {a }}$ Des R. Richardson ${ }^{\text {a }}$ and Paul V. Bernhardt ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Medicine, University of Queensland, Clinical Sciences Building Floor C, Royal Brisbane Hospital, Brisbane 4029, Australia, and ${ }^{\text {b }}$ Department of Chemistry, University of Queensland, Brisbane 4072, Australia
Correspondence e-mail: bernhardt@chemistry.uq.edu.au

Received 5 October 1999
Accepted 23 November 1999
The potentially tridentate $\mathrm{O}, \mathrm{N}, \mathrm{S}$-donor ligand, 2-hydroxy-1naphthaldehyde 2-methylthiosemicarbazone, $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$, has been structurally characterized and the molecule is found to exhibit a distorted planar structure with the thiosemicarbazide moiety being twisted slightly out of the plane defined by the naphthyl ring.

Comment

Ligands of the aroylhydrazone class have shown much promise as potential chelators for treatment of iron overload disease and perhaps cancer (Johnson et al., 1982; Baker et al., 1992; Richardson et al., 1995; Richardson \& Milnes, 1997). Our previous investigations have demonstrated that 2-hydroxy-1naphthaldehyde isonicotinoyl hydrazone, (II), and several other aroylhydrazone chelators possess antitumour activity due to their ability to bind intracellular iron (Richardson et al., 1995; Richardson \& Milnes, 1997; Darnell \& Richardson, 1999; Richardson \& Bernhardt, 1999). From these studies we have been able to identify structural components of the hydrazones which infer antineoplastic activity, namely the salicylaldehyde and 2-hydroxy-1-naphthaldehyde moieties (Richardson et al., 1995).

Another related group of chelators known as the thiosemicarbazones also show high antitumour activity due to their ability to inhibit ribonucleotide reductase (Cory et al., 1995; Liu et al., 1995). Considering this, we have designed and synthesized a new group of ligands by condensation of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with a range of thiosemicarbazides. The parent compound of this new series of chelators is 2-hydroxy-1-naphthaldehyde thiosemicarbazone, (III). Substitution of a methyl group at the 2 -position of (III) to give (I) results in a marked decrease in anti-proliferative activity and a decrease in iron chelation efficacy (Lovejoy et al., 1999). These data may suggest that this latter substitution diminishes the metal ion binding capability of these chelators. Studies assessing the biological activity of this new class of compounds are underway and will be reported
elsewhere (Lovejoy et al., 1999). In the present communication we report the X-ray crystal structure of 2-hydroxy-1-naphthaldehyde 2-methylthiosemicarbazone, (I).

(I)

(II)

(IV)

A view of (I) is shown in Fig. 1. The bond lengths are typical of a compound of this type (Table 1), and the angles are all close to 120°. The greatest deviation from an ideal trigonal planar geometry is at N 2 where steric repulsion between the N-methyl group and S 1 contracts the $\mathrm{C} 13-\mathrm{N} 2-\mathrm{N} 1$ angle to 116.1 (3) ${ }^{\circ}$. The naphthyl ring is planar, with atoms $\mathrm{C} 1-\mathrm{C} 10$ all lying within $0.05 \AA$ of the least-squares plane of the ring system. The atoms deviating the most from the naphthyl ring moiety are $\mathrm{C} 12 \quad[0.428(3) \AA]$, $\mathrm{C} 13 \quad[-0.671(7) \AA]$, N3 $[-1.288(7) \AA]$ and $\mathrm{S} 1[-0.452(8) \AA]$, which is also seen in the $\mathrm{C} 11-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 12$ torsion angle of $9.7(5)^{\circ}$. The conformation of the molecule finds S1 anti to N1. Generally, it has been found that ligands of the salicylaldehyde thiosemicarbazone class [such as (IV)] act as meridionally coordinating, tridentate S,N,O-donors, so there needs to be a ca 180° rotation about $\mathrm{N} 2-\mathrm{C} 13$ in (I) before a metal ion can be bound in this fashion. The potential donors O 1 and N 1 are found in a syn disposition, as a result of a strong intramolecular hydrogen bond [O1$\mathrm{H} 1 \cdots \mathrm{~N} 11.89, \mathrm{O} 1 \cdots \mathrm{~N} 12.603$ (4) Å].

The presence of the N-methyl group in (I) also has other consequences for the coordination chemistry of this potentially tridentate ligand. In the structures of unsubstituted thiosemicarbazones such as (IV), the aldimine and phenolic protons (attached at positions corresponding to O 1 and N 2 in the present structure) can be removed upon coordination of the S, N and O-donors. However, it is not essential that either the aldimine or the phenolic protons are lost upon coordination of ligands in this class. Examples of (IV) coordinated in its neutral (Zimmer et al., 1991), mono anionic (Soriano-Garcia et al., 1985) and dianionic (Gyepes et al., 1981) forms are known. In the present case, the N-methyl group renders (I) incapable of losing more than one proton (at O1). In principle, this should not detract from the ability of (I) (or its anion) to coordinate to a metal ion, but the charge of the resulting
complex will not be as variable as those found for complexes of (IV). The charge of the ligand and its resulting complexes in vivo are important for determining the biological activity of these chelators. Passage across the cell membrane is inhibited if the compound is hydrophilic, so systems close to neutrality are generally desirable if high iron chelation activity is sought (Richardson et al., 1990).

We are currently exploring the coordination chemistry and biological activity of these novel chelators.

Figure 1
View of (I) showing 30\% probability ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.

Experimental

The title compound was synthesized by refluxing equimolar amounts of the 2-hydroxy-1-naphthaldehyde and 2-methyl-3-thiosemicarbazide in ethanol. The compound was collected by filtration and crystals suitable for X-ray work were obtained by slow evaporation of an ethanolic solution of the compound.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$
$M_{r}=259.32$
Monoclinic, $P 2_{1} \AA$
$a=8.0560(10) \AA$
$b=6.7586(6) \AA$
$c=11.694(3) \AA$
$\beta=102.930(10)^{\circ}$
$V=620.56(19) \AA^{3}$
$Z=2$
$D_{x}=1.388 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=10-14^{\circ}$
$\mu=0.252 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Needle, yellow
$0.50 \times 0.50 \times 0.13 \mathrm{~mm}$

Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.732, T_{\text {max }}=0.968$
1278 measured reflections
1191 independent reflections
1067 reflections with $I>2 \sigma(I)$
Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C2-O1	$1.351(4)$	C13-N2	$1.365(5)$
C11-N1	$1.293(5)$	C13-S1	$1.671(4)$
C12-N2	$1.461(5)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.371(4)$
C13-N3	$1.332(5)$		
O1-C2-C1	$122.7(3)$	$\mathrm{N} 2-\mathrm{C} 13-\mathrm{S} 1$	$122.9(3)$
O1-C2-C3	$115.2(4)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{N} 2$	$121.4(3)$
N1-C11-C1	$120.3(3)$	$\mathrm{C} 13-\mathrm{N} 2-\mathrm{N} 1$	$116.2(3)$
N3-C13-N2	$116.6(3)$	$\mathrm{C} 13-\mathrm{N} 2-\mathrm{C} 12$	$122.4(3)$
N3-C13-S1	$120.5(3)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 12$	$121.2(3)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0918 P)^{2}\right. \\
& \quad+0.0783 P] \text { where } \\
& P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$S=1.044$
1191 reflections
164 parameters

H -atom parameters constrained

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~S}^{1}{ }^{\mathrm{i}}$	0.86	2.90	$3.472(3)$	125.3
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.86	2.21	$3.033(4)$	161.5
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$	0.82	1.89	$2.603(4)$	145.1

Symmetry codes: (i) $-1-x, y-\frac{1}{2},-1-z$; (ii) $-1-x, \frac{1}{2}+y,-1-z$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SET4 in CAD-4 Software; data reduction: Xtal (Hall et al., 1992); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

DRR thanks the National Health and Medical Research Council (NH and MRC) of Australia for a project grant (970360) and the Department of Medicine for a Research Fellowship and Senior Research Fellowship. PVB acknowledges support from the University of Queensland.

[^0]
References

Baker, E., Richardson, D. R., Gross, S. \& Ponka, P. (1992). Hepatology, 15, 492-501.
Cory, J. G., Cory, A. H., Rappa, G., Lorico, A., Liu, M. C., Lin, T. S. \& Sartorelli, A. C. (1995). Adv. Enzyme Regul. 35, 55-68.
Darnell, G. \& Richardson, D. R. (1999). Blood, 94, 781-792.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gyepes, E., Pavelčík, F. \& Ben̆o, A. (1981). Collect. Czech. Chem. Commun. 46, 975-981.
Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. The Xtal3. 2 User's Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Johnson, D. K., Murphy, T. B., Rose, N. J., Goodwin, W. H. \& Pickart, L. (1982). Inorg. Chim. Acta, 67, 159-165.
Liu, M. C., Lin, T. S. \& Sartorelli, A. C. (1995). Prog. Med. Chem. 32, 1-35.
Lovejoy, D. B., Bernhardt, P. V. \& Richardson, D. R. (1999). In preparation.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Richardson, D. R. \& Bernhardt, P. V. (1999). J. Biol. Inorg. Chem. 4, 266-273.
Richardson, D. R. \& Milnes, K. (1997). Blood, 89, 3025-3038.
Richardson, D. R., Tran, E. \& Ponka, P. (1995). Blood, 86, 4295-4306.
Richardson, D. R., Wis Vitolo, L. M., Hefter, G. J., May, P. M., Clare, B. W., Webb, J. \& Wilairat, P. (1990). Inorg. Chim. Acta, 170, 165-170.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Soriano-García, M., Valdés-Martínez, J., Toscano, R. A. \& Gómez-Lara, J. (1985). Acta Cryst. C41, 500-502.

Spek, A. L. (1990). Acta Cryst. A46, C-34.
Zimmer, M., Schulte, G., Luo, X.-L. \& Crabtree, R. H. (1991). Angew. Chem. Int. Ed. Engl. 30, 193-194.

supporting information

2-Hydroxy-1-naphthaldehyde 2-methylthiosemicarbazone

David B. Lovejoy, Des R. Richardson and Paul V. Bernhardt

Computing details

Data collection: CAD4 (Enraf-Nonius, 1988); cell refinement: SET4 in CAD4; data reduction: Xtal (Hall, 1992); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

(I)

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$
$M_{r}=259.32$
Monoclinic, $P 2_{1}$
$a=8.056$ (1) \AA
$b=6.7586$ (6) \AA
$c=11.694(3) \AA$
$\beta=102.93(1)^{\circ}$
$V=620.56(19) \AA^{3}$
$Z=2$

Data collection

Enraf-Nonius CAD4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min }=0.732, T_{\max }=0.968$
1278 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.121$
$S=1.04$
1191 reflections
164 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& F(000)=272 \\
& D_{\mathrm{x}}=1.388 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 25 \text { reflections } \\
& \theta=10-14^{\circ} \\
& \mu=0.25 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& \text { Needle, yellow } \\
& 0.50 \times 0.50 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

1191 independent reflections

1067 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 8$
$l=-13 \rightarrow 13$
3 standard reflections every 120 min
intensity decay: $<5 \%$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
Calculated $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0918 P)^{2}+\right.$ $0.0783 P$]
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.24$ e \AA^{-3}
Absolute structure parameter: - 0.03 (16)
Absolute structure: Flack (1983)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	-0.7419 (4)	-0.6739 (7)	-0.1715 (3)	0.0358 (7)
C2	-0.6693 (4)	-0.8398 (6)	-0.2108 (3)	0.0397 (8)
C3	-0.6255 (5)	-1.0077 (6)	-0.1409 (4)	0.0468 (9)
H3	-0.5803	-1.1178	-0.1708	0.056*
C4	-0.6487 (5)	-1.0105 (7)	-0.0301 (4)	0.0501 (10)
H4	-0.6198	-1.1234	0.0154	0.060*
C5	-0.7164 (4)	-0.8442 (7)	0.0182 (3)	0.0439 (9)
C6	-0.7310 (5)	-0.8447 (10)	0.1368 (3)	0.0598 (13)
H6	-0.6987	-0.9561	0.1831	0.072*
C7	-0.7915 (5)	-0.6844 (12)	0.1826 (3)	0.0694 (15)
H7	-0.7967	-0.6843	0.2612	0.083*
C8	-0.8469 (5)	-0.5174 (9)	0.1130 (4)	0.0638 (14)
H8	-0.8920	-0.4096	0.1452	0.077*
C9	-0.8347 (5)	-0.5124 (8)	-0.0024 (3)	0.0493 (10)
H9	-0.8710	-0.4008	-0.0476	0.059*
C10	-0.7671 (4)	-0.6761 (7)	-0.0530 (3)	0.0382 (8)
C11	-0.7930 (4)	-0.5054 (6)	-0.2464 (3)	0.0374 (8)
H11	-0.8649	-0.4107	-0.2259	0.045*
C12	-0.9362 (5)	-0.2061 (7)	-0.4052 (3)	0.0490 (10)
H12A	-0.9698	-0.2395	-0.3338	0.073*
H12B	-1.0308	-0.2253	-0.4706	0.073*
H12C	-0.9009	-0.0703	-0.4023	0.073*
C13	-0.7210 (4)	-0.3187 (6)	-0.5125 (3)	0.0406 (8)
N1	-0.7393 (3)	-0.4850 (5)	-0.3420 (2)	0.0363 (7)
N2	-0.7951 (4)	-0.3331 (5)	-0.4187 (2)	0.0388 (7)
N3	-0.5897 (4)	-0.4384 (6)	-0.5126 (3)	0.0572 (10)
H3A	-0.5557	-0.5193	-0.4554	0.069*
H3B	-0.5389	-0.4347	-0.5699	0.069*
O1	-0.6391 (4)	-0.8520 (4)	-0.3196 (2)	0.0506 (7)
H1	-0.6686	-0.7487	-0.3553	0.061*
S1	-0.79038 (12)	-0.16331 (19)	-0.62414 (7)	0.0524 (3)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0352(15)$	$0.0387(18)$	$0.0357(16)$	$-0.0064(18)$	$0.0128(12)$	$0.0023(18)$
C2	$0.0390(17)$	$0.042(2)$	$0.0419(18)$	$-0.0033(18)$	$0.0169(14)$	$0.0050(19)$
C3	$0.0443(19)$	$0.039(2)$	$0.059(2)$	$0.0019(17)$	$0.0149(16)$	$0.0050(19)$
C4	$0.044(2)$	$0.045(2)$	$0.060(2)$	$-0.0005(19)$	$0.0106(17)$	$0.023(2)$
C5	$0.0362(17)$	$0.056(2)$	$0.0404(18)$	$-0.0081(19)$	$0.0102(14)$	$0.015(2)$
C6	$0.051(2)$	$0.088(4)$	$0.043(2)$	$-0.012(3)$	$0.0141(17)$	$0.025(3)$
C7	$0.059(2)$	$0.120(5)$	$0.0352(19)$	$-0.019(3)$	$0.0217(17)$	$0.006(3)$
C8	$0.059(3)$	$0.093(4)$	$0.047(2)$	$-0.004(3)$	$0.028(2)$	$-0.013(3)$
C9	$0.048(2)$	$0.063(3)$	$0.0388(19)$	$0.002(2)$	$0.0150(16)$	$0.001(2)$
C10	$0.0314(15)$	$0.049(2)$	$0.0367(16)$	$-0.0090(18)$	$0.0125(12)$	$0.003(2)$
C11	$0.0418(18)$	$0.0346(18)$	$0.0390(18)$	$-0.0008(17)$	$0.0157(14)$	$0.0001(16)$
C12	$0.050(2)$	$0.048(3)$	$0.055(2)$	$0.0113(18)$	$0.0252(16)$	$0.0098(18)$
C13	$0.0415(18)$	$0.041(2)$	$0.0422(18)$	$-0.0044(17)$	$0.0144(14)$	$0.0059(17)$
N1	$0.0408(15)$	$0.0374(17)$	$0.0340(15)$	$0.0010(14)$	$0.0152(12)$	$0.0087(14)$
N2	$0.0420(14)$	$0.0402(17)$	$0.0394(14)$	$0.0051(14)$	$0.0202(12)$	$0.0101(14)$
N3	$0.063(2)$	$0.063(2)$	$0.058(2)$	$0.0192(19)$	$0.0405(16)$	$0.0237(19)$
O1	$0.0673(17)$	$0.0449(17)$	$0.0489(14)$	$0.0061(15)$	$0.0324(14)$	$0.0019(14)$
S1	$0.0628(6)$	$0.0576(6)$	$0.0407(5)$	$0.0088(6)$	$0.0194(4)$	$0.0179(5)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-C2	1.389 (6)	C7-C8	1.404 (9)
C1-C11	1.440 (5)	C8-C9	1.375 (6)
C1-C10	1.445 (4)	C9-C10	1.420 (6)
C2-O1	1.351 (4)	C11-N1	1.293 (5)
C2-C3	1.397 (5)	C12-N2	1.461 (5)
C3-C4	1.350 (6)	C13-N3	1.332 (5)
C4-C5	1.421 (6)	C13-N2	1.365 (5)
C5-C10	1.413 (6)	C13-S1	1.671 (4)
C5-C6	1.417 (5)	N1-N2	1.371 (4)
C6-C7	1.348 (9)		
C2- $\mathrm{C} 1-\mathrm{C} 11$	121.4 (3)	C9-C8-C7	120.3 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10$	118.0 (4)	C8-C9-C10	120.5 (5)
C11-C1-C10	120.6 (4)	C5-C10-C9	117.9 (3)
O1-C2-C1	122.7 (3)	C5-C10-C1	119.3 (4)
O1-C2-C3	115.2 (4)	C9-C10-C1	122.8 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	122.1 (3)	N1-C11-C1	120.3 (3)
C4-C3-C2	120.1 (4)	N3-C13-N2	116.6 (3)
C3-C4-C5	121.3 (4)	N3-C13-S1	120.5 (3)
C10-C5-C6	120.1 (4)	N2-C13-S1	122.9 (3)
C10-C5-C4	119.2 (3)	C11-N1-N2	121.4 (3)
C6-C5-C4	120.7 (4)	C13-N2-N1	116.2 (3)
C7-C6-C5	120.2 (5)	C13-N2-C12	122.4 (3)
C6-C7-C8	120.8 (4)	N1-N2-C12	121.2 (3)

$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$1.4(5)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$-179.4(3)$
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-177.3(3)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.8(5)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.9(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.4(6)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$2.7(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-176.3(4)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.7(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$178.4(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$2.4(7)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-2.2(7)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$0.4(6)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$-1.1(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$179.9(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 1$	$176.4(3)$

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 1$	$-2.7(5)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$1.2(6)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 1$	$-176.1(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 5$	$0.5(5)$
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 5$	$179.7(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$	$177.8(3)$
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$	$-3.0(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{N} 1$	$-15.4(5)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 11-\mathrm{N} 1$	$165.5(3)$
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{N} 1-\mathrm{N} 2$	$175.6(3)$
$\mathrm{N} 3-\mathrm{C} 13-\mathrm{N} 2-\mathrm{N} 1$	$-7.5(5)$
$\mathrm{S} 1-\mathrm{C} 13-\mathrm{N} 2-\mathrm{N} 1$	$171.5(3)$
$\mathrm{N} 3-\mathrm{C} 13-\mathrm{N} 2-\mathrm{C} 12$	$177.8(4)$
$\mathrm{S} 1-\mathrm{C} 13-\mathrm{N} 2-\mathrm{C} 12$	$-3.2(5)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 13$	$175.7(3)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 12$	$-9.5(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 A \cdots \mathrm{~S}^{\mathrm{i}}$	0.86	2.90	$3.472(3)$	125
$\mathrm{~N} 3 — \mathrm{H} 3 B \cdots 1^{\mathrm{ii}}$	0.86	2.21	$3.033(4)$	162
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 1$	0.82	1.89	$2.603(4)$	145

Symmetry codes: (i) $-x-1, y-1 / 2,-z-1$; (ii) $-x-1, y+1 / 2,-z-1$.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1278). Services for accessing these data are described at the back of the journal.

