854 research outputs found

    Scalar GW detection with a hollow spherical antenna

    Get PDF
    We study the response and cross sections for the absorption of GW energy in a Jordan-Brans-Dicke theory by a resonant mass detector shaped as a hollow sphere.Comment: latex file, 9 page

    Explicit asymptotic modelling of transient Love waves propagated along a thin coating

    Get PDF
    The official published version can be obtained from the link below.An explicit asymptotic model for transient Love waves is derived from the exact equations of anti-plane elasticity. The perturbation procedure relies upon the slow decay of low-frequency Love waves to approximate the displacement field in the substrate by a power series in the depth coordinate. When appropriate decay conditions are imposed on the series, one obtains a model equation governing the displacement at the interface between the coating and the substrate. Unusually, the model equation contains a term with a pseudo-differential operator. This result is confirmed and interpreted by analysing the exact solution obtained by integral transforms. The performance of the derived model is illustrated by numerical examples.This work is sponsored by the grant from Higher Education of Pakistan and by the Brunel University’s “BRIEF” research award

    Three-body decay of the d* dibaryon

    Full text link
    Under certain circumstances, a three-body decay width can be approximated by an integral involving a product of two off-shell two-body decay widths. This ``angle-average'' approximation is used to calculate the πNN\pi NN decay width of the d(Jπ=3+,T=0)d^*(J^\pi=3^+, T=0) dibaryon in a simple Δ2\Delta^2 model for the most important Feynman diagrams describing pion emissions with baryon-baryon recoil and meson retardation. The decay width is found to be about 0.006 (0.07, 0.5) MeV at the dd^* mass of 2065 (2100, 2150) MeV for input dynamics derived from the Full Bonn potential. The smallness of this width is qualitatively understood as the result of the three-body decay being ``third forbidden''. The concept of \ell forbiddenness and the threshold behavior of a three-body decay are further studied in connection with the πNN\pi NN decay of the dibaryon d(Jπ=0,T=0or2)d'(J^\pi=0^-, T=0 or 2) where the idea of unfavorness has to be introduced. The implications of these results are briefly discussed.Comment: 15 pages, RevTeX, two-column journal style, six figure

    Water waves generated by a moving bottom

    Full text link
    Tsunamis are often generated by a moving sea bottom. This paper deals with the case where the tsunami source is an earthquake. The linearized water-wave equations are solved analytically for various sea bottom motions. Numerical results based on the analytical solutions are shown for the free-surface profiles, the horizontal and vertical velocities as well as the bottom pressure.Comment: 41 pages, 13 figures. Accepted for publication in a book: "Tsunami and Nonlinear Waves", Kundu, Anjan (Editor), Springer 2007, Approx. 325 p., 170 illus., Hardcover, ISBN: 978-3-540-71255-8, available: May 200

    Optical nanofibers and spectroscopy

    Full text link
    We review our recent progress in the production and characterization of tapered optical fibers with a sub-wavelength diameter waist. Such fibers exhibit a pronounced evanescent field and are therefore a useful tool for highly sensitive evanescent wave spectroscopy of adsorbates on the fiber waist or of the medium surrounding. We use a carefully designed flame pulling process that allows us to realize preset fiber diameter profiles. In order to determine the waist diameter and to verify the fiber profile, we employ scanning electron microscope measurements and a novel accurate in situ optical method based on harmonic generation. We use our fibers for linear and non-linear absorption and fluorescence spectroscopy of surface-adsorbed organic molecules and investigate their agglomeration dynamics. Furthermore, we apply our spectroscopic method to quantum dots on the surface of the fiber waist and to caesium vapor surrounding the fiber. Finally, towards dispersive measurements, we present our first results on building and testing a single-fiber bi-modal interferometer.Comment: 13 pages, 18 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: changed title, clarification of some points in the text, added references, replacement of Figure 13

    Debris disk size distributions: steady state collisional evolution with P-R drag and other loss processes

    Full text link
    We present a new scheme for determining the shape of the size distribution, and its evolution, for collisional cascades of planetesimals undergoing destructive collisions and loss processes like Poynting-Robertson drag. The scheme treats the steady state portion of the cascade by equating mass loss and gain in each size bin; the smallest particles are expected to reach steady state on their collision timescale, while larger particles retain their primordial distribution. For collision-dominated disks, steady state means that mass loss rates in logarithmic size bins are independent of size. This prescription reproduces the expected two phase size distribution, with ripples above the blow-out size, and above the transition to gravity-dominated planetesimal strength. The scheme also reproduces the expected evolution of disk mass, and of dust mass, but is computationally much faster than evolving distributions forward in time. For low-mass disks, P-R drag causes a turnover at small sizes to a size distribution that is set by the redistribution function (the mass distribution of fragments produced in collisions). Thus information about the redistribution function may be recovered by measuring the size distribution of particles undergoing loss by P-R drag, such as that traced by particles accreted onto Earth. Although cross-sectional area drops with 1/age^2 in the PR-dominated regime, dust mass falls as 1/age^2.8, underlining the importance of understanding which particle sizes contribute to an observation when considering how disk detectability evolves. Other loss processes are readily incorporated; we also discuss generalised power law loss rates, dynamical depletion, realistic radiation forces and stellar wind drag.Comment: Accepted for publication by Celestial Mechanics and Dynamical Astronomy (special issue on EXOPLANETS

    Inflammatory activity assessment by F18 FDG-PET/CT in persistent symptomatic sarcoidosis

    Get PDF
    SummaryBackgroundEstablishing inflammatory activity in sarcoidosis patients with persistent disabling symptoms is important. Whole body F18-FDG PET/CT (PET) appeared to be a sensitive method to detect inflammatory activity in newly diagnosed symptomatic sarcoidosis. The aim was to assess the presence of inflammatory activity using PET in sarcoidosis patients with unexplained persistent disabling symptoms and the association between PET findings and serological inflammatory markers.MethodsSarcoidosis patients who underwent a PET between June 2005 and June 2010 (n = 89), were retrospectively included. All PET scans were examined and positive findings were classified as thoracic and/or extrathoracic. As serological markers of inflammatory activity angiotensine-converting enzyme (ACE), soluble interleukin-2 receptor (sIL-2R), and neopterine were considered.ResultsIn 65/89 (73%) of the studied patients PET was positive, 52 of them (80%) had serological signs of inflammatory activity. In 14/15 patients with a Chest X-ray stage IV PET was positive. In 80% of the PET positive patients extrathoracic inflammatory activity was found. Sensitivity of combined serological inflammatory markers for the presence of inflammatory activity as detected by PET was 80%, specificity 100%, positive predictive value 100%, negative predictive value 65%.ConclusionsThe majority of sarcoidosis patients with persistent disabling symptoms, even those with radiological stage IV, had PET positive findings with remarkably 80% extrathoracic lesions. In 20% PET was positive without signs of serological inflammatory activity. PET appeared to be of additional value to assess inflammatory activity in patients with persistent symptoms in the absence of signs of serological inflammatory activity and to detect extrathoracic lesions

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
    corecore