10,951 research outputs found

    A new microscopic nucleon-nucleon interaction derived from relativistic mean field theory

    Full text link
    A new microscopic nucleon-nucleon (NN) interaction has been derived for the first time from the popular relativistic mean field theory (RMFT) Lagrangian. The NN interaction so obtained remarkably relate to the inbuilt fundamental parameters of RMFT. Furthermore, by folding it with the RMFT-densities of cluster and daughter nuclei to obtain the optical potential, it's application is also examined to study the exotic cluster radioactive decays, and results obtained found comparable with the successfully used M3Y phenomenological effective NN interactions. The presently derived NN-interaction can also be used to calculate a number of other nuclear observables.Comment: 4 Pages 2 Figure

    Video Summary of How Credible is Online Physical Activity Advice? The Accuracy of Free Adult Educational Materials

    Get PDF
    The uploaded work is a video summary of original research. The video is less than seven minutes long. The original research summarized in the video examined the credibility of physical activity advice presented in online educational materials for lay adults. The video highlights main points of the research, leads the viewer through steps to judge the credibility of lay material, and provides links to resources for further education and guidance. The video has several supplemental files. They are as follows: (a) the full transcript text to the video narration, which includes the links to the resource material that are listed at the end of the video, (b) a copy of the video summary for free download, and (c) a copy of the closed-captioning file with English subtitles. In conclusion, the uploaded video summary and its supplemental files are for use in a variety of educational settings, serving students and professionals

    Phonon-phonon interactions and phonon damping in carbon nanotubes

    Get PDF
    We formulate and study the effective low-energy quantum theory of interacting long-wavelength acoustic phonons in carbon nanotubes within the framework of continuum elasticity theory. A general and analytical derivation of all three- and four-phonon processes is provided, and the relevant coupling constants are determined in terms of few elastic coefficients. Due to the low dimensionality and the parabolic dispersion, the finite-temperature density of noninteracting flexural phonons diverges, and a nonperturbative approach to their interactions is necessary. Within a mean-field description, we find that a dynamical gap opens. In practice, this gap is thermally smeared, but still has important consequences. Using our theory, we compute the decay rates of acoustic phonons due to phonon-phonon and electron-phonon interactions, implying upper bounds for their quality factor.Comment: 15 pages, 2 figures, published versio

    Rim curvature anomaly in thin conical sheets revisited

    Full text link
    This paper revisits one of the puzzling behaviors in a developable cone (d-cone), the shape obtained by pushing a thin sheet into a circular container of radius R R by a distance η \eta [E. Cerda, S. Chaieb, F. Melo, and L. Mahadevan, {\sl Nature} {\bf 401}, 46 (1999)]. The mean curvature was reported to vanish at the rim where the d-cone is supported [T. Liang and T. A. Witten, {\sl Phys. Rev. E} {\bf 73}, 046604 (2006)]. We investigate the ratio of the two principal curvatures versus sheet thickness hh over a wider dynamic range than was used previously, holding R R and η \eta fixed. Instead of tending towards 1 as suggested by previous work, the ratio scales as (h/R)1/3(h/R)^{1/3}. Thus the mean curvature does not vanish for very thin sheets as previously claimed. Moreover, we find that the normalized rim profile of radial curvature in a d-cone is identical to that in a "c-cone" which is made by pushing a regular cone into a circular container. In both c-cones and d-cones, the ratio of the principal curvatures at the rim scales as (R/h)5/2F/(YR2) (R/h)^{5/2}F/(YR^{2}) , where F F is the pushing force and Y Y is the Young's modulus. Scaling arguments and analytical solutions confirm the numerical results.Comment: 25 pages, 12 figures. Added references. Corrected typos. Results unchange

    Dynamic buckling and fragmentation in brittle rods

    Full text link
    We present experiments on the dynamic buckling and fragmentation of slender rods axially impacted by a projectile. By combining the results of Saint-Venant and elastic beam theory, we derive a preferred wavelength lambda for the buckling instability, and experimentally verify the resulting scaling law for a range of materials including teflon, dry pasta, glass, and steel. For brittle materials, buckling leads to the fragmentation of the rod. Measured fragment length distributions show two clear peaks near lambda/2 and lambda/4. The non-monotonic nature of the distributions reflect the influence of the deterministic buckling process on the more random fragmentation processes.Comment: 4 pages, 5 figures, submitted to Physical Review Letter

    Morphology of meteoroid and space debris craters on LDEF metal targets

    Get PDF
    We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties

    A semi-quantitative scattering theory of amorphous materials

    Full text link
    It is argued that topological disorder in amorphous solids can be described by local strains related to local reference crystals and local rotations. An intuitive localization criterion is formulated from this point of view. The Inverse Participation Ratio and the location of mobility edges in band tails is directly related to the character of the disorder potential in amorphous solid, the coordination number, the transition integral and the nodes of wave functions of the corresponding reference crystal. The dependence of the decay rate of band tails on temperature and static disorder are derived. \textit{Ab initio} simulations on a-Si and experiments on a-Si:H are compared to these predictions.Comment: 4 pages, 2 figures, will be submitted to Phys. Rev. Let

    High-frequency homogenization for periodic media

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2010 The Royal Society.An asymptotic procedure based upon a two-scale approach is developed for wave propagation in a doubly periodic inhomogeneous medium with a characteristic length scale of microstructure far less than that of the macrostructure. In periodic media, there are frequencies for which standing waves, periodic with the period or double period of the cell, on the microscale emerge. These frequencies do not belong to the low-frequency range of validity covered by the classical homogenization theory, which motivates our use of the term ‘high-frequency homogenization’ when perturbing about these standing waves. The resulting long-wave equations are deduced only explicitly dependent upon the macroscale, with the microscale represented by integral quantities. These equations accurately reproduce the behaviour of the Bloch mode spectrum near the edges of the Brillouin zone, hence yielding an explicit way for homogenizing periodic media in the vicinity of ‘cell resonances’. The similarity of such model equations to high-frequency long wavelength asymptotics, for homogeneous acoustic and elastic waveguides, valid in the vicinities of thickness resonances is emphasized. Several illustrative examples are considered and show the efficacy of the developed techniques.NSERC (Canada) and the EPSRC
    • …
    corecore