80 research outputs found

    Periodic structure in nuclear matter

    Get PDF
    The properties of nuclear matter are studied in the framework of quantum hadrodynamics. Assuming an ω-meson field, periodic in space, a self-consistent set of equations is derived in the mean-field approximation for the description of nucleons interacting via σ-meson and ω-meson fields. Solutions of these self-consistent equations have been found: The baryon density is constant in space, however, the baryon current density is periodic. This high density phase of nuclear matter can be produced by anisotropic external pressure, occurring, e.g., in relativistic heavy ion reactions. The self-consistent fields developing beyond the instability limit have a special screw symmetry. In the presence of such an ω field, the energy spectrum of the relativistic nucleons exhibits allowed and forbidden bands, similar to the energy spectrum of the electrons in solids

    Hogyan (ne) tanítsunk fizikát?

    Get PDF

    Phase transitions in quark-gluon matter

    Get PDF
    If the local color symmetry in a quark-gluon matter is broken, the expectation value of the gluon field 〈Aμa(x)〉 may be different from zero. Such a gluon-condensed phase has been found in mean field approximation. The gluon-condensed phase is characterized by a static, periodic chromomagnetic field, which is coupled to a periodic spin-color density distribution of quarks and antiquarks. Transitions of first and second order type have been found between the gluon-condensed and normal phases, the latter characterized by the vanishing value of the mean gluon field

    Stress model for the wrinkling of ion-implanted layers

    Get PDF
    L

    Different effects of amiodarone and dofetilide on the dispersion of repolarization between well-coupled ventricular and purkinje fibers

    Get PDF
    Increased transmural dispersion of repolarization is an established contributing factor to ventricular tachyar-rhythmias. In this study, we evaluated the effect of chronic amiodarone treatment and acute administration of dofetilide in canine cardiac preparations containing electrotonically coupled Purkinje fibers (PFs) and ventricular muscle (VM) and compared the effects to those in uncoupled PF and VM preparations using the conventional microelectrode technique. Dispersion between PFs and VM was inferred from the difference in the respective action potential durations (APDs). In coupled preparations, amiodarone decreased the difference in APDs between PFs and VM, thus decreasing dispersion. In the same preparations, dofetilide increased the dispersion by causing a more pronounced prolongation in PFs. This prolongation was even more emphasized in uncoupled PF preparations, while the effect in VM was the same. In uncoupled preparations, amiodarone elicited no change on the difference in APDs. In conclusion, amiodarone decreased the dispersion between PFs and VM, while dofetilide increased it. The measured difference in APD between cardiac regions may be the affected by electrotonic coupling; thus, studying PFs and VM separately may lead to an over-or underestimation of dispersion. © 2021, Canadian Science Publishing. All rights reserved
    corecore