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If the local color symmetry in a quark-gluon matter is broken, the expectation value of the gluon
field (A, (x)) may be different from zero. Such a gluon-condensed phase has been found in mean
field approximation. The gluon-condensed phase is characterized by a static, periodic chromomag-
netic field, which is coupled to a periodic spin-color density distribution of quarks and antiquarks.
Transitions of first and second order type have been found between the gluon-condensed and normal
phases, the latter characterized by the vanishing value of the mean gluon field.

I. INTRODUCTION

According to the rather widely accepted view in the ha-
dronic matter at high enough temperature and/or density
a transition may take place into a quark-gluon plasma
phase.’? In high energy heavy-ion collisions there is a
chance to reach that region of physical parameters where
this phase transition is possible. How the plasma is pro-
duced and what kind of phase transition takes place are
questions of extreme interest. A number of approaches
has been developed to estimate the temperature and the
density of the transition.’~> In the quark-gluon plasma
phase another phase transition associated with the restora-
tion of the chiral invariance is also expected.® In this pa-
per we will assume that the transition from hadronic
phase into the quark-gluon plasma is already accom-
plished and we will search for further possibilities of
phase transitions of the plasma. It will be shown that a
gluon-condensed phase may exist characterized by the
nonvanishing expectation value of the gluon field
(A4}, (x)), which plays the role of the order parameter. In
the gluon-condensed phase a static, periodic chromomag-
netic field is present and this induces in a self-consistent
way a similar periodic behavior of the spin-color density
of the quarks and antiquarks.” Recently a somewhat
similar approach has been developed by Celenza and Sha-
kin for the treatment of hadronic structure.® Gluon con-
densation characterized by color singlet, scalar order pa-
rameters has been investigated in several papers.’~!?

To have a nonvanishing expectation value of the gluon
field (A4j(x)), the local color symmetry must be broken.
According to Elitzur’s theorem,'® this symmetry breaking
cannot be spontaneous. It was pointed out by Elitzur that
it is the introduction of the mean field approximation
which produces already a violation of the local gauge
symmetry. Consequently, the expectation value of the
gluon vector potential may be different from zero; howev-
er, it cannot be a good order parameter. Nevertheless, we
will use it as an approximate order parameter, since the
phase transition found in mean field approximation may
survive in the true, symmetric theory.

In Sec. II the mean field approximation of QCD is
summarized. In Sec. III the self-consistent set of equa-
tions is derived from the field equations. The thermo-
dynamical description of the system is given in Sec. IV.
The characteristic features of the gluon-condensed phase
are enumerated in Sec. V. Section VI is devoted to the
discussion of the phase transitions. Concluding remarks
are contained by Sec. VII. The solution of the Dirac
equation for SU(2) can be found in Appendix A. The
generalization for SU(3) is given in Appendix B. Finally,
the equivalence of the self-consistent equations with the
necessary conditions of the thermodynamical equilibrium
is proved in Appendix C.

II. MEAN FIELD APPROXIMATION

The field equations of the QCD in conventional nota-
tions are given by

iy, +gA v*T Y —myp=0, (1
3 F = FHa ()

where the field strength F#***(x) and the vector current
FH%x) are defined as follows:

FPYo(x)=0F A — 3 Ao+ gfobegrbyve | (3)
FHx)=gfo AFH 4 gyt T 4)

The generators and the structure constants of the gauge
group are denoted by T9 and f°%, respectively. As a
consequence of Eq. (2), the divergence of the color vector
current vanishes, so that the color charge

Q.= [ 7= x0d (5)

is a conserved quantity. The field equations (1) and (2)
are symmetric under the local gauge transformations.

We assume that the field operators carrying both color
and Lorentz indices may have nonvanishing expectation
values:

(Are) =4 K30 .

Let us introduce the following decomposition:
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AM(x)=A4 *(x)+at%x) , (6)

where both A#%(x) and a*“(x) are field operators, while
A #%(x) is a ¢ number and the expectation value of a"%(x)
vanishes by definition:

(at?)=0.

Substituting the decomposition (6) into Eq. (2) and taking
expectation value on both sides, the following equation is
obtained for the mean field A4 #%(x):

3, F a=gf U JF 4 (gPy T ) —M* 4" . (7)

Deriving this equation, it is assumed that in addition to
aM(x) all of its derivatives have vanishing expectation
values and all the expectation values of products of in-
dependently fluctuating quantities are also zero. In this
way all terms containing a#%(x) or its derivatives drop out
except for the products of nonindependently fluctuating
quantities, which may have nonvanishing expectation
values:

M*(v)=—g* ¥ (a,.a*) .
ptY
c

The parameter M%(v) formally plays the role of the mass
associated with the excitations of the mean gluon field.
For the sake of simplicity M*(v)=M? is assumed. In or-
der to have a logically consistent description, the gluon
operators A#%x) in Eq. (1) are substituted by their expec-
tation values 4 #%(x) and the coupling constant g by a re-
normalized one.

It is worthwhile to point out that the field equations ob-
tained by the mean field approximation can be derived
from the Lagrangian given by

L =Sy o ) — 8,y Y) —g Iy A LT
—FLFM—mip+ s MPA A4, . (8)

Having this Lagrangian we have a_unique way to intro-
duce the energy-momentum tensor 7 ** of the system us-
ing the standard definition.

III. SELF-CONSISTENT EQUATIONS

One of the possible strategies for the solution of the
coupled, nonlinear set of field equations is to introduce an
ansatz for the solution. Substituting this ansatz into the
field equations one must check if the resulting equations
can be solved for the parameters of the ansatz.

For the mean gluon field we introduce the following an-
satz:

A" (x)=at0%kx)/g , 9)

which is separable in the Lorentz and color indices and
for the case of SU(2) color symmetry the space-time
dependence is given by

0'(kx)=sinkx, 6*kx)=coskx, 63*(kx)=0 . (10)

The choice of this ansatz is motivated by the remarkable

fact that the Dirac-equation can be solved exactly (see Ap-
pendix A).!41

Having the fermion single-particle energies, the vector
current .¥#¢ can be calculated in a straightforward way.
Substituting the ansatz (9) into Eq. (7), the following set
of self-consistent equations can be derived:

(j* =0, (11)

<j,§‘2>=§{Mza“+[(k2—k3)a“+(aoko-ak)k#]} , (12)

<j5‘3>=—é[(a%—az)k“—(aoko—ak)a“] , (13)

where
(jltm) = <g$v7“Ta¢'u )
and the quasiparticle field

¥,(x)=R *¢(x) (14)
is defined by the help of the operator
R =exp(—ikxT?) . (15)

Our considerations are confined to the study of the case of
SU(2), the generalization for SU(3) can be found in Ap-
pendix B.

The solution of the self-consistent set of equations pro-
vides us the amplitude a* and the wave vector k*. It is
worthwhile to mention that in the mean field approxima-
tion the color vector current is conserved only if a,k*=0.
This condition can be satisfied if ak=0, a;=0, and
ko=0. In this case the chromoelectric field vanishes and
a static, periodic chromomagnetic field, orthogonal both
to a and k vectors is present; the color density of the
gluons and that of the quarks and antiquarks vanish; the
energy eigenvalues for quarks and antiquarks are identi-
cal. Without loss of generality the system of coordinates
can be chosen in such a way that k;=k,=0 and
a,=a3y=0 are fulfilled. The only nonvanishing parame-
ters are a =a, and k =k;.

IV. THERMODYNAMICAL EQUILIBRIUM

We assume that the quark-gluon matter under con-
sideration has a volume ¥V and it is in thermodynamical
equilibrium with the surrounding world. Neither the en-
ergy nor the number of baryons is fixed. The system is
characterized by the temperature T and the baryonic
chemical potential u. Thus the thermodynamical proper-
ties of the system can be described by the following grand
canonical density matrix:

p=Z 'exp[ —(H —uN)/T], (16)
where the partition function Z is given by
Z =Trexp[—(H —uN)/T] . (17)

Here, H = f T %4V is the Hamiltonian and N denotes the
number of baryons. We introduce also the thermodynam-
ical potential defined by

QO=—-TInZ . (18)



In the mean field approximation the quarks behave as
independent quasiparticles. In this approximation the
Dirac equation can be solved without any further restric-
tion, so one is able to calculate explicitly the thermo-
dynamical potential density

o d} —(Ep—w)/T
o=";=¢ T% f_—L(sz In[(1+e )

—(Ey +u)/T

X(1+e )1, (19)

where € is given by

= —(f)=3;—2[(M2+k2——k%)a2~(M2+k2)a(2,

—(ak)*+2agkoak] . (20)

The energy eigenvalues of the quarks and antiquarks are
denoted by E, and E,, respectively. The 22 indepen-
dent spin and color states are labeled by the index A.

In addition to the temperature T and chemical potential
i, the generalized thermodynamical potential density is
the function also of the parameters a and k:

o(T,u;a,k) .

The thermodynamical equilibrium is characterized by the
minimum of the generalized thermodynamical potential
density. This means that at prescribed values of T and p
the conditions

dw 0w

% =0, ok =0 (21)
should be satisfied. It is not difficult to prove, that Egs.
(21), which are the necessary conditions of the thermo-
dynamical equilibrium, are the independent ones among
the self-consistent set of Eqs. (12) and (13) (see Appendix
C). The solution of Egs. (21) defines the dependence of
the parameters a and k on the temperature and chemical
potential in the thermodynamical equilibrium:

a(u,T), ku,T).

Using these functions the generalized thermodynamical
potential density for the gluon-condensed phase can be ob-
tained as a function of the temperature and of the baryon
chemical potential:

o, T)=w(p,T;a(u,T),k(u,T)) . (22)

The thermodynamical potential density of the normal
phase is given by

o, T)=w(u,T;a =0,k =0) . (23)

The other thermodynamical characteristics of the system
can be easily derived from functions (22) and (23).

In order to examine the order of the phase transitions,
we need the first and second derivatives of the thermo-
dynamical potential density. According to their general
definitions in thermodynamics, the baryon density p,, the
entropy density s., and the specific heat C, of the gluon-
condensed system can be given as follows:
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do, do(u,T;a,k)

—— , 24
dw, dw(u,T;a,k)
Se=—gr=—— 3= , 25)
as. 3% 3% da 0w 0k
Ce=T3r==T\|372 " 3102 a1 T ar0k oT |
(26)

Equations (24)—(26) were obtained by taking into account
Egs. (21). Similarly in the normal phase we have

dw, —_ do(u,T;a =0,k)

Pn=— o B , (27)
9w, do(u,T;a =0,k)
0s, azw(,u,T;a =0,k)
C,,—-TaT——T a7’ . (29)

V. GLUON-CONDENSED PHASE

In the normal phase the mean gluon field is equal to
zero and quarks and antiquarks form a noninteracting
Fermi gas. In the other phase, gluons are condensed
forming a static, periodic chromomagnetic field. The
gluon-condensed phase has a layered structure. The 3-
vector component of the color vector current is propor-
tional to the vector potential, & %(x)~ A4 *%(x) (a=1,2,3).
So in the layers of the thickness 7/k, a flow of the color
charges appears, the direction of which is opposite in the
neighboring layers. The quarks and the antiquarks form a
latticelike structure in the periodic mean gluon field,
which can be characterized by the spin-color density given
as

psc={Pr° (3 +iv’y'T'W) . (30)
In our case the spin-color density has the form

psc=7Pp +pocoskx , (31
where

po= (B, 7%y y'T'y,) .
The baryon density pp and the amplitude of the oscilla-
tions of the spin-color density p, can be divided into two

terms, one coming from quarks and the other from the
antiquarks:
pe=pf —pd’, po=pt’ —p’ .

Let us call the color charges blue and red. Then, accord-
ing to Eq. (31) the density of the spin-up red and spin-
down blue quarks and similarly the density of the spin-up
blue and spin-down red quarks vary periodically around
the half value of the quark density. The same can be told
about the antiquarks. The spatial spin-color density oscil-
lations of quarks and antiquarks have the same phase, but

in general are of different amplitudes. This seems to be
the analog of the Overhauser effect.!s!’
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VI. PHASE TRANSITIONS

The minimum of the generalized thermodynamical po-
tential density has been found numerically and the ther-
modynamical state functions as the baryon density pp, the
entropy density s and the specific heat C have been com-
puted at the thermodynamical equilibrium.

According to Gibbs’s law, in phase equilibrium the
temperatures, the pressures (p = —w) and the chemical
potentials must be equal for the two phases. Typical
phase diagrams are shown in Figs. 1(a)—1(c) for the values
of the parameters M?=0.1, g=15.0, and m=1.0. As the
field equations (1) and (7) are invariant under the scale
transformation
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FIG. 1. Phase diagrams for the quark-gluon matter
(M?=0.1, g=15.0, m=1.0).

xt—Axt, kF—kF/A, m—m/A,
a"—»a“/)s., M2~>M2/)\,2, g£—g,

where A is a real constant, the quark mass m was taken as
the energy unit. Therefore the physical quantities used
have the following units:

[a#]=[kF]=m, [M*]=m? [g]=1,
[T1=[u]l=m, [o]l=m* [pgl=m’.

In the phase diagrams shown in Figs. 1(a)—1(c) there is a
region limited by the curves labeled by I and II, in which
the set of Eqgs. (11)—(13) has nontrivial solution. All the
states of physical meaning lie on the left-hand side (lhs) of
the =0 line on the p-T diagram [Fig. 1(c)]. The curve
joining the states of phase equilibrium has two branches,
branch I in the high density region and branch II in the
low density region. Thus, at a given value of the tempera-
ture there is a density interval in which the gluon-
condensed phase can exist and it is thermodynamically
more favored than the normal phase.

The condensed phase is characterized by the nonvanish-
ing mean value of the gluonic vector potential. Therefore
in the condensed phase a number of symmetries are bro-
ken. Since the normal and the condensed phases have dif-
ferent symmetries, the curve of phase equilibrium cannot
be terminated by a single point.

It was established that at the formation of the gluon-
condensed phase from the low density normal phase the
amplitude of the mean gluon field a increases continuous-
ly from zero along an isotherm (Fig. 2). The square of the
amplitude a2 was found proportional to the temperature
difference t =T —T_ at a given value of the baryon
chemical potential, where 7. denotes the critical tem-
perature at which the phase transition takes place. On the
other hand, the wave vector k being different from zero
has a finite jump k. as a result of the phase transition
(Fig. 3). At a given value of the chemical potential, the
difference k —k . was found proportional to the tempera-
ture difference ¢ too. The only exception is the M2=0
case, when a =k, as a consequence of the symmetry of
the self-consistent equations. In that case the wave vector
has no jump (k. =0) and k is proportional to .

From Fig. 2 one also can see that along an isotherm the
amplitude of the gluon field and the wave vector grow at
first with increasing chemical potential. But they have a
maximum at which @~k holds and then begin to de-
crease. If the temperature is low enough (as in the case
shown on Fig. 2), a phase equilibrium can be reached by
increasing the chemical potential. Then the condensed
phase disappears by a phase transition of the first order
(branch I), accompanied by an absorption of the latent
heat Q =T (s, —s,) <0 (given to the system by the sur-
rounding world). At the same time the specific volume of
a baryon increases, since the inequality 1/p, < 1/p, holds.

Branch I of the phase equilibrium curve approaches to
branch II in the point yg, corresponding to a “‘condensed”
state with @ =k =0 (see Fig. 3), which is indistinguishable
from the normal state. Approaching this point along
branch I the latent heat and the difference of the specific
volumes go to zero.
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FIG. 2. Amplitude a and the wave vector k of the mean
gluon field and the difference of the thermodynamical potential
densities of the condensed and the normal phases w, —, versus
the baryon chemical potential along an isotherm.

Through branch II a second order phase transition
takes place. Indeed, according to Eqgs. (24) and (25) no
change in the entropy and in the baryon density (specific
volume) appears. Let us now examine the specific heat.
According to Egs. (26) and (29), the difference of the
specific heats of the condensed and normal phases can be
written as follows:

9w da dw 0k
AC=C—C=—Tu \F5q ar T aTak ot |~ 2
Ker
10 T
“

M2=0.1 I
o5F g=15.0 i

m=10
O 1

0 1 g 2w

FIG. 3. Variation of the jump of the gluonic wave vector k.,
along the phase equilibrium curve versus the chemical potential.
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It was established numerically that the second derivatives
3%w/3Tda and 3*w/dTdk have nonzero values at branch
II. As the temperature difference goes to zero t—0, the
wave vector goes also k ~t—0, 0k /3t =0k /3T remain-
ing constant. Since a’~t, da /3T ~t /2 goes to infinity
as t—0. Thus the first term on the right-hand side of Eq.
(31) causes an anomaly in the specific heat. In the case of
M?=0, the specific heat has only a finite jump, since

16
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(a)
16 T T ™
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FIG. 4. Fermion single-particle energy levels E+ and E'{’ in
the condensed and normal phases, respectively, in the case of the
second order phase transitions for (a) M*s0, (b) M2=0, and (c)
in the case of first order phase transitions. The hatched and the
double hatched areas denote the single-particle states occupied
in the condensed and the normal phases, respectively.
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a =k ~t. According to the general convention, the
anomalies of the system can be characterized by the fol-
lowing critical exponents:

oa _,-r .
ak !

In our case they have the following values a=1/2(0),
B=1/2(1), and ¥ =1/2(0) for M*£0 (M?=0), and satisfy
the general relation'®

a~tB, C~1—2

a+2B+y=2.

Microscopically the phase transition is connected with
the redistribution of the fermions among the single-
particle energy levels. On Fi%s. 4(a)—4(c) the single-
particle energy levels E4 and E'J’ are shown for the con-
densed and the normal states, respectively, as functions of
the longitudinal momentum p; (at p,=p,=0) in a few
typical cases. When a phase transition through branch II
takes place, a condensate with k =k >>a ~0 is formed.
In this case the energy level E_ has a minimum at
p3=*3(k*—a?)"?5£0 [Fig. 4(a)]. Fermions, originally
occupying the twice degenerated levels in the Fermi
sphere of the radius p in the momentum space, can re-
order and occupy two spheres of the same radii with
centers removed from each other by the ‘distance”
(k*—a?!2. Since this reordering appears at infini-
tesimally small value of the gluonic amplitude a, no varia-
tion of the baryon density takes place. However, when the
condensate disappears at the branch I, the equality k =~a
holds. In this case the level E_ has no minimum, but it
is smaller than E'!’. From Fig. 4(c) one can see that the
phase transition takes place as a result of contraction of
the Fermi sphere in the momentum space, resulting in the
decrease of the baryon density. In the case of M2=0 the
condensate with @ =k ~0 is formed without any variation
in the momentum space, as the single-particle energy lev-
els for the normal and the condensed states coincide [Fig.
4(b)]. Fermions redistribute among the momentum states
only, when increasing the chemical potential a condensate
with growing amplitude a =k builds up.

Ker
410

05

10! 102 g
FIG. 5. Temperature T at which the second order phase
transition takes place at 4 =0 and the jump of the wave vector

k. accompanying the transition as a function of the coupling
constant g.

The dependence of the phase diagrams on the coupling
constant g has also been examined. The phase transition
at given value of the chemical potential takes place at
higher temperatures if the coupling constant decreases
(Fig. 5). The same can be told about the chemical poten-
tial at a given value of the temperature. It should be men-
tioned, that the jump of the wave vector k. decreases
with decreasing coupling constant at its small values (Fig.
5). It has to be noted that the gluon-condensed phase may
exist only above some minimal value of g.

VII. CONCLUSIONS

A model of quark-gluon matter is given in relativistic
mean field approximation, in which a simple explanation
on thermodynamical basis is found of appearing and
disappearing a phase with broken local color symmetry,
called gluon-condensed phase. Let us suppose, the
quark-gluon matter of given volume is cold and dilute
enough to form a free quark-antiquark Fermi gas. Put-
ting it into a bath to keep the temperature constant the
following happens if the baryon chemical potential is in-
creased, i.e., more and more quarks are pushed into the
system. At first, the baryon density reaches a value at
which the formation of the gluon-condensed phase be-
comes energetically favored [branch II on Figs. 1(a)—1(c)].
In the gluon-condensed phase with broken color symme-
try, a mean gluon field is continuously building up having
a spatial periodicity of the length 27 /k. This phase tran-
sition is a second order one, connected with the redistribu-
tion of the fermions among the single-particle levels in the
momentum space without the variation of the Fermi
momentum. With further increase of the chemical poten-
tial the amplitude of the mean gluon field grows and a
strong gluon field of order of magnitude of the chemical
potential builds up. In the meantime the periodicity
length 277 /k has a minimum. In the case of M?=0, the
local gauge symmetry is restorted and it can be seen very
easily that the ansatz (9) is gauge equivalent with the
mean gluon field given by Eq. (4), which is constant in
space as well as in time, resulting a constant chromomag-
netic field. At low enough temperatures, a phase transi-
tion of first order takes place when the chemical potential
is further increased [branch I on Figs. 1(a)—1(c)]. Then
the fermions redistribute among the single-particle states
with sudden decrease of the Fermi momentum and sym-
metries broken in the condensed phase are restored.

From the phase diagram depicted on Fig. 1 one may ex-
pect that the gluon-condensed phase exists at any high
enough temperatures. This is the case only if one uses a
really constant coupling constant g, as we did. However
if one would use the running coupling constant of QCD
the gluon-condensed phase ceased to exist at some high
enough temperature, since the effective coupling constant
would decrease.
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APPENDIX A: SOLUTION OF THE DIRAC
EQUATION IN THE CASE OF SU(2)

Substitute ansatz (9) into Eq. (1). First of all, one can
get rid of the x dependence of the Hamiltonian perform-
ing a rotation around the third axis in the color space
given by

v—¥, =Ry, R =exp(—ikxT?). (A1)
The solutions of the transformed Dirac equation are plane
waves:

¥, =U(ple =7 . (A2)

The energy eigenvalues and the eight component spinor
U (p) can be obtained by solving the following equation:

(Y*pu+v*BuT*—m)U(p)=0, (A3)
where the notation
Bi='=0, B;=’=—a,, B, =k, (A4)

was introduced. Defining the spinor X by the formula

U=(p,y*+v*B T +m)X , (A5)

we arrive at the equation given by

[(pu+BET*)p*+ BT+ 5 f " BBIT —m*]X =0 .
(A6)

This equation has a very simple structure which becomes

apparent if the o*" matrices are represented by the Pauli
matrices in the conventional manner:

0 o°

o 0

oV
o?

anzl UGB:GaBY (a,B,}’=1,2’3) .

b

Here €*# is the totally antisymmetric tensor of third
rank. Using this representation Eq. (A6) can be written in
the following form:

C D
D C

u;
us

up

0, (A7)
Uz

where

>
i

and

C=pl‘p“+%BZBI‘“_m2+2P#B:Tﬂ+eaﬂ‘}’BiBzo.‘rT1 ,
D =i(B{B3 —B2B3)o?T! .

The matrix on the lhs of Eq. (A7) commutes with the
Dirac matrix ys. Therefore the solutions have the form
u;=u;=u, and u;=—u,=u_. u, should satisfy the
equations given by

(C+D)uy =(R2+s54Tu.+ =0, (A8B)

where

R*=p,p*+BiB*—m?,
i
sh=— eaﬁrB;Bgi?(BéBi—B;Bg) o?,

=2p"B}, s} =2p"B, .

+™

N

Equations (A8) can be diagonalized multiplying by the
operator (R2—s%T°), making use of the commutation re-
lations

[s%,5%1=0 (a,b=1,2,3).

From both of Egs. (A8) the same secular equation can be
obtained in the form of algebraic equation of fourth order:

Po+bps+cpo+d =0, (A9)
where
b=—2[p*+m?++(ad+a>)++(ki+kI],
c =2[ao(pa)+ko(pk)], (A10)

d=[p*+m?++(a’—ad)+ +(k*—k})]*—(pa)*—(pk)?
— +[kda’+adk?+a’k®—(ak)*—2apkoak] .

Thus all fermion energy levels are twice degenerated.
From relations (A 10) one also can see that in the case of
ag=ko=0, ak=0 quark and antiquark energy levels are
the same and (anti) quarks moving with equal momenta
into opposite directions have the same energies.

APPENDIX B: GENERALIZATION FOR SU(3)

In the case of SU(3), the generators of the symmetry
group can be expressed by the Gell-Mann matrices A%:

T°=4A° (a=1,2,...,8).

The vector potential is defined as

0'(kx)=t cos(kx +a;), O*(kx)=tsin(kx +a,), 6*(kx)=0, 0*kx)=tscos[+(1+3kx+a,],
03 (kx)=t,sin[ 3 (14 39)kx +a,], 6%kx)=tecos[ +(39 — kx +agl, 607(kx)=tg¢sin[+(39 — 1)kx +a4], 6%kx)=0,
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where 9, t,, L4, ¢, a1, a4, and ag are real constants.
Substituting this ansatz into Eq. (7) the following set of
self-consistent equations can be derived:

('Y =Ubt,cosa, — %‘1 VEt tgcos(as—ag)

(j#2)= Uf)‘t,sina, —_ % V"t4tﬁsin(a4—a6) ,

1+39 2
t
s 4T

1-39 /2

<j#3>=—V“ t%'*‘ 4 [

(jEy = Uk tycosay+ 3 VHt tgcos(a+ag) ,

(jli,‘s):U‘it4sina4+ 3 V“tlt6sin(a1+a6) ,

(jk8) = U* tecosag+ 3943 Ve tycos(as—ay) ,

(j5‘7)=U’f_t6sina6+ 39+3 VBt tysin(ay—ay) ,

(j¥y=—Vv3pH 1+4319t3+3a4—11%
where the notations
|
6%%368 (6'—i6%)e" "1 7%
RT%(kx)AR = |(8' +i6%)e /9% _93+‘(/%98
(6 +i6%e N7 (gbyigT)e I
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Ut‘=é{Mza"+§,[(k2——k8)a"+(aok0—ak)k”]} :

Vh = —é{(a%—az)k“—(aoko‘ak)a”} )

E+=7(38%1)%, £=1

are used.
The space-time dependence of the Dirac-equation is
eliminated by the transformation
¥,=R'Y, R =exp[—ikx (T3 +3V3T?)], (B1)

where ¥ is a real constant. The matrix of the transforma-
tion is diagonal of the form

e 0 0
R=|0 &% o |,
0 0 %

where the phases are the following:
o1=7kx(3+1), @y=7kx(3—1), @3=—kx .

After elementary matrix operations one gets the identity

(@*—i6%)e' F17%
(65—ig")e" %27 % (B2)

It can be seen, that the space-time dependence of the Dirac equation vanishes, if the functions 6°(kx) obey the following

set of equations:
. —i(kx +ay) .
' —i@=tie TN @ —i6=te

1 B

—i(1/Dkx(1438)—ia,

—i(1/2)kx(33—1)—iag

y 96—i97=t3e ’

(B3)

2
63+‘—/=3—98=t4, —93+‘/§98=t5, —7398=—(I4+t5),

where £,,t,, ..
6,=t,cos(kx +a;), O,=t;sin(kx +a,),
O3=t3, Os=tscos[5(1+3D)kx+a,],
Os=t,sin[ 3 (14 33)kx +ay] ,

., ts and a;,a4,a¢ are real constants. A possible solution of Eqgs. (B3) is given by

(B4)

Bs=tecos[ 7 (30 — Dkx +agl, O,=tesin[ (39— Dkx +-ag], Oz=ts .

In this case
R'6kx)AR =127,
where t° are real constants:
1— 24 si 3 4_
L =t;cosa,, £ =t,s1naqa,, L =13, L =l,4c08Q4 ,

t’=t,sina,, t®=tscosag, t'=tesinag, 8=ty .

Choosing t;=t3=0 in Eqgs. (B4), the Dirac equation for
the transformed field ¥, has the form

{
[iv#3u+ Th, Y* (A +V3IAY) — $y#a, 1A —m]y, =0 .
(BS)

Seeking the solution as a plane wave of the form (A2), and
multiplying by (y*p,+m + %y"BZ}J‘), the following
equation is obtained:

[pup*—m?+Bp*A°+  (BLB** —iBLBSo*)A°AIU =0 .
(B6)
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Here the notations
Bﬁ= —a,t’/g (a=12,4,56,7),
3 8
B, =k,, B,=V3%k,

have been introduced. Let us seek the solutions of Eq.
(B6) as eigenspinors of ¥, in the form

U
U=
L)
with u;=u,=u_ and u;=—u,=u_. Then for u, one
gets the equations
(C+tD)u,=0, (B7)

where C and D are given by
C =p,p"*—m?+Bjp*A*+ ¢ BB**A°\*
— $ie*P1oTBiBIA LY
=+0%BEB, —BIBHAAL .

In the case of ky=0, the matrix D vanishes. In the

case of a transversal chromomagnetic field a,=ad,,,

I

"

1.4_6 4 7 1.5.7 2.5 6
Se=2sisisd —sishsk +shsish +sisisd)+sif(sL)

% §[(sh )24+ (s2 24 (s3 )2

APPENDIX C: SELF-CONSISTENT EQUATIONS
AND THERMODYNAMICAL EQUILIBRIUM

In this section the equivalence of the necessary condi-
tions of thermodynamical equilibrium with the indepen-
dent equations among the self-consistent set of Egs. (12)
and (13) are shown in the SU(2) and SU(3) cases, respec-
tively.

The expectation value of the color vector current of the
fermions can be computed exactly:!’

3E, N 3E, _
n n
aB: " 8BS "

3

vI==—32 f (277)3

_ de—w)
BBZ
(C1)

Accounting for Eq. (C1), one can see that not all the equa-
tions in sets (12) and (13) are independent from each oth-
er. In the case of SU(2), Eq. (C1) contains the derivations

3 3 3 2

B2~ %8a,’ oB °ok,
and the energy eigenvalues do not depend on Bl =0.
Thus, from the necessary conditions of the mmlmum of
the generalized thermodynamical potential (21) the equa-
tions
M2y e U3 de
Gy = aBZ gaau, U= gak

k,=k8,; we can make use of the commutation relation
[ C,0*=%]=0, seeking the solution as an eigenspinor of o2,
i.e., in the form

X
u=ly,
with X{=1iX,=X+. Then the equation
(R45%A%X+=0 (B8)

is obtained. Here
RZ—_—pﬂpl‘_mz_*_lB“Blm
ﬂt:BMp;l_’_ ldachbByc+ fabc bBC__ 3B )
and the structure constants of SU(3) symmetric in all in-
dices are denoted by d°*. Equation (B8) can be solved
only if its determinant is equal to zero. Thus an algebraic

equation of sixth order can be obtained for the energy
eigenvalues, which is of third order in R%:

R®—R%%s% +5,=0, (B9)

where

+(s3)P =312 —(s1)]

1

— 52+ 6P+ 6P+ 6 — 3637 .

and the identity

(jt'ry=0
are obtained. So one gets the last two equations of the set
(12) as independent ones.

In the case of SU(3) the parameters ¥, ¢, t4, and 4 can
be chosen in such a way that conditions (21) coincide with

the independent equations from the set (13). In this case
(C1) contains the derivations
d d 9 d 1 .
=g ) =g (if 95£0) ,
3B, "9k, 09BS "ok, V39
d =—gt? 9 (a =1,2,4,5,6,7),

9B, ~ da,

and according to the definition of the color vector current
the relations

<J#a) = "'__t-a(i{;‘> (a =1y2’4’576y7) ’

‘/30 (i), if 90
0, if 3=0

ey =

hold, where (j{) is given by

Gtr=-3 [ 22, laE‘ o

S fa

n,+
da,

(27)3
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We see that only the equations for (j**) and (j*) are in-
dependent. From the conditions (12) the equations

p3y _ de _ de
<JU ) aB‘S‘ ak“ ’
Jde de
i) = = ta =172’415’ )7 y
Gy 3B" gt 3a, (a 6,7)

i.e., the equations

) — g O€
<-”~#)—g da,

can be obtained. These equations are equivalent to the set
of Egs. (13) if

9=0, 1,=0, ti=ti=1.

*Permanent address: Institute for Experimental Physics, Lajos
Kossuth University, 4001 Debrecen, Hungary.
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