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Stress model for the wrinkling of ion-implanted layers
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A model is presented to describe the regular ripple patterns observed in several kinds of high-dose
ion-implantation experiments. The model is based on elastic instability of the implanted layer,
occurring when a critical value of the lateral stress is reached during ion implantation. The predict-
ed wavelength of wrinkling is related to the width of the implanted-atom distribution, and it is in

good agreement with experimental results.

INTRODUCTION

Fine periodic structures have for a long time been ob-
served on sputtering eroded surfaces, ' and more recently,
similar features were also found on various targets after
blistering, Raking, or exfoliation induced by ions in the
MeV energy range. The evolution of these ripple pat-
terns is not understood, although several explanations
have been proposed. ' Our model is based on the elas-
tic instability of the implanted layer occurring when a
critical value of the lateral stress is reached during ion
implantation. Depending on experimental conditions,
the ripple structure induced by elastic instability is either
observable directly on the sample surface, or it may only
be made visible after other surface deformation processes
take place.

THE MODEL

To model an ion-implanted sample, let us consider a
homogeneous, isotropic semispace with its uppermost
layer of thickness h subjected to uniform stress parallel to
the surface lying in the x-y plane. Let the unstressed part
of the semispace exert a restoring force on the stressed
plate proportional to its perpendicular deflection. Equi-
librium of this thin plate of thickness h is described by
the following set of equations:
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Here W(x,y) is the perpendicular defiection of the plate,
and 8 is the two-dimensional stress tensor. p is the
coefficient of the restoring force per unit area, and the
bending moment of the plate is
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where E and v are Young's modulus and Poisson's ratio
of the plate.

Equations (1) and (2) are a system of nonlinear partial
differential equations that has no general solution avail-
able in analytical form, so only approximate solutions for
small values of 8'can be sought.

Let o' be the stress tensor belonging to the evident
solution of 8'=0. For infinitesimal w de6ections let
8 =& +50', where 5o is also infinitesimal.

If & is a solution to the equations, then (2) is satisfied,
and only (1) has to be dealt with. As & is constant in
space, and o „=crxy 0& with the notation of o„„=o.

yy= —Pwe get
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As long as the derivatives of w are finite, the terms con-
taining 58 can be neglected, so we conclude to the fol-
lowing linearized equation:

DA w+hPhw+IMw =0 .

As general solutions of the preceding equation are still

not available, let us find the conditions of the existence of
a periodic solution

to = toosin(kx), k&0,

meaning the appearance of rippling in the x direction.
After substitution this leads to
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Dk4 —hPk2+q ——0,
giving the relation between P and k if p is known.
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SimpliSed version

For an exactly rectangular stress profile, p can be tak-
en from Ref. 10 as
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where the 0 indices mark the elastic constants of the sem-
ispace. Thus periodic solutions with wave number k ap-
pear at a plane stress of

Dk C
h hk

As C, D, k, and h are all positive, (9} is of a parabolic
nature; let its minimum be at k =k„;,. This means that
after reaching the corresponding stress of P,„„the plate
will become instable against wrinkling with wave number

k,„;,. The critical values are
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The value of p used in the preceding formulas assumes
an unstressed substrate and a plate (corresponding to the
iinplanted layer) with a uniform stress across its thick-
ness. Besides material constants, the wave number only
depends on the plate thickness, which can be taken as a
first approximation to be equal to I, the full width at half
maximum of the implanted atom distribution. Formulas
(10)—(11) are not sensitive to the value of Poisson's ratio,
taking into account that the latter can only be in the
range 0-0.5 in real materials. Thus setting v=v0=0. 3
does not introduce significant errors. Moreover, to get
material independent approximations of the critical
values, in the simplified version of the model we shall as-
sume E =ED, and get

DISCUSSION

Our model is valid only for ripples of infinitesimal am-
plitudes. However, if rippling starts with a well-defined
A, , it can be justly expected that the wavelength will not
change (significantly), while the amplitude grows during
further ion bombardment.

In the simplified version the predicted value of A. was
obtained without using any fitted parameters. Despite
this, it is in remarkable agreement with experimental data
obtained in three kinds of experiments, i.e., after Raking,
after excessive sputtering, or directly on the sample sur-
face." However, the value of P„;, obtained from the
model in this form is rather large. This should be due to
the assumed sharp interface between the stressed and un-
stressed media (rectangular distribution profile of im-
planted atoms).

In the more realistic version, when a fitted value of iM is
used, the fit can be made separately for different groups
of materials, to reintroduce the material dependence that
was disregarded in the simplified version.

In Fig. 1 the'solid line corresponds to formula (13),
while the two dashed lines are fitted to the points ob-
tained in experiments on either different kinds of metallic
glasses or single-crystalline silicon. The points corre-
sponding to high-dose sputtering experiments are also in-
dicated.

Using the fitted value of the restoring coefficient p,
(which is obviously smaller for real profiles), P,'„, is much
smaller than P„;, and it is comparable to stresses known
to be attainable in high-dose ion-implantation experi-
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where hR is the ion range straggling (in the case of
monoenergetic implants), and A, is the predicted wave-
length of the ripple structures formed by the elastic insta-
bility of the implanted layer.

Realistic version
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As the simplified version is only an approximation in
case of ion implantation, a more realistic picture is ob-
tainable by keeping p as a fitted parameter (i.e., allowing
for the nonrectangular stress distribution). In this case
the critical values from (7) are

FIG. 1. The periodicity of wrinkling (A, ) vs the implanted
atom distribution width (I ) observed in various experiments.
A symbols denote the high dose sputtering experiments, 0 the
ones on single-crystal silicon, + the ones on metallic glasses,
and 8 the others.
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ments, e.g. , Refs. 12 and 13.
Despite the vast amount of high-dose ion implantation

experiments carried out on various polycrystalline sam-
ples, we know of only one instance, where similar ripple
patterns were observed. We ourselves did not observe
the phenomenon on the polycrystalline modification of
the very same metallic glass that did exhibit ripple forma-
tion in its amorphous state. ' This is in accord with the
implicit assumption of the model, i.e., that the sample is
crystallographically homogeneous in a region large
enough to accommodate a reasonable number of ripple
trains. If this is not the case like, in polycrystalline tar-
gets, the uniform and large enough stress field cannot
build up to cause elastic instability. In the case men-
tioned in Ref. 2, the pattern was only seen on a single
grain of the sample, which was a large enough single-
crystalline region for the phenomenon to occur.

Another necessary condition for the appearance of
wrinkling is the attainment of the critical stress. Of
course this does not necessarily happen in all cases, no
matter how high the implanted dose is. For example,
other surface deformation processes (Aaking, blistering,
exfoliation) may take place before the critical stress is
reached.

The direction of the ripples is expected to be perpen-
dicular to the direction of largest stress. In symmetric
cases this direction is selected by minor imperfections,

but it can also be determined externally. Such an experi-
ment has already been conducted, ' when two metallic
glass ribbons of about 50-pm thickness were implanted
together along their edges. As expected, the direction of
the ripples was transversal, i.e., perpendicular to the
direction of larger stress.

Thus the model is in remarkable agreement with the
available experimental data. There were, however, no ex-
periments conducted with changing only the control pa-
rameter, i.e., the width of the implanted atom distribu-
tion. This gave rise to speculations that the ripple wave-
length may depend not on the range straggling, but on
the projected range in case of monoenergetic implanta-
tion. Experiments that exclude this assumption are re-
ported in the following paper. '

CONCLUSION

The stress model for the wrinkling of ion-implanted
layers has been applied successfully for experiments pro-
ducing ripple morphologies under various conditions of
high-dose ion bombardment, ' Fig. 1. The correlation
between the wavelength of rippling and the width of the
implanted-atom distribution is noticed for the first time,
and an explanation is given for the formation of the sur-
face morphologies.
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