30 research outputs found

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Statistical modelling of large carnivores' distribution in Europe

    No full text
    Les grands carnivores recolonisent l’Europe grĂące Ă  une augmentation des forĂȘts et des populations d'ongulĂ©s sauvages ainsi que des mesures de conservation. Or, les carnivores entrent en interactions avec les activitĂ©s humaines telles que l’élevage. Quantifier leur distribution peut aider Ă  situer les impacts sur ces activitĂ©s. Ces espĂšces sont trĂšs mobiles, difficiles Ă  observer et vivent Ă  de faibles densitĂ©s. La modĂ©lisation de leur distribution prĂ©sente plusieurs dĂ©fis en raison 1) de leur dĂ©tectabilitĂ© imparfaite, 2) de leur distribution dynamique dans le temps et 3) du suivi Ă  grande Ă©chelle basĂ© sur la collecte de donnĂ©es opportunistes sans mesure formelle de l'effort d'Ă©chantillonnage. Dans cette thĂšse, nous nous sommes concentrĂ©s sur deux espĂšces de grands carnivores, le loup et le lynx borĂ©al, pour dĂ©velopper les mĂ©thodologies liĂ©es Ă  la modĂ©lisation de la distribution d’espĂšces. Nous avons explorĂ© l’application des modĂšles d’occupancy dans le contexte du suivi des grands carnivores en Europe. Ces modĂšles Ă©tablissent le lien entre la prĂ©sence d’une espĂšce et l’environnement dans le but d’établir la proportion d'une zone d'Ă©tude que l’espĂšce occupe, tout en prenant en compte une dĂ©tectabilitĂ© imparfaite.Plus prĂ©cisĂ©ment, nous avons d'abord Ă©valuĂ© la dynamique de la distribution des loups en France de 1994 Ă  2016, tout en prenant en compte leur dĂ©tection imparfaite. Nous avons montrĂ© l'importance de prendre en compte l’effort d'Ă©chantillonnage variant dans le temps et dans l'espace Ă  l’aide de de modĂšles d’occupancy dynamique.DeuxiĂšmement, comme des faux positifs peuvent ĂȘtre prĂ©sents lors de la surveillance d'espĂšces rares, nous avons dĂ©veloppĂ© un modĂšle dynamique d’occupancy qui tenait compte simultanĂ©ment des faux nĂ©gatifs et des faux positifs pour analyser conjointement des donnĂ©es qui contenaient Ă  la fois des dĂ©tections certaines et des dĂ©tections incertaines. L'analyse des donnĂ©es sur le lynx borĂ©al dans les pays alpins a suggĂ©rĂ© que l'incorporation de dĂ©tections incertaines produisait des estimations des paramĂštres Ă©cologiques plus prĂ©cises.TroisiĂšmement, nous avons dĂ©veloppĂ© un modĂšle qui prenait en compte l'hĂ©tĂ©rogĂ©nĂ©itĂ© de la dĂ©tection tout en traitant les faux positifs. En appliquant notre nouvelle approche au loup en France, nous avons dĂ©montrĂ© que l'hĂ©tĂ©rogĂ©nĂ©itĂ© de la dĂ©tection du loup Ă©tait principalement due Ă  un effort d'Ă©chantillonnage hĂ©tĂ©rogĂšne dans l'espace.QuatriĂšmement, pour traiter des sources de donnĂ©es multiples, nous avons dĂ©veloppĂ© un modĂšle de processus ponctuel de Poisson qui permettait l'inclusion de diffĂ©rentes sources de donnĂ©es lors de la construction des SDMs. Nous avons montrĂ© comment la combinaison des donnĂ©es sur la distribution permettait d’optimiser un suivi en rĂ©pondant Ă  la question de savoir quelle(s) source(s) d'information apporterait l’essentiel de l’information lors du suivi du lynx en NorvĂšge.CinquiĂšmement, pour comprendre les mĂ©canismes sous-jacents de la colonisation des loups en France, nous avons dĂ©veloppĂ© un cadre statistique pour estimer l'occupation spatio-temporelle et la dynamique des effectifs en utilisant le cadre de diffusion Ă©cologique. Nous avons montrĂ© le potentiel de notre approche pour prĂ©dire la distribution future potentielle du loup Ă  court terme, un Ă©lĂ©ment qui pourrait contribuer Ă  cibler des zones de gestion ou se concentrer sur des zones de conflit potentiel.Dans l'ensemble, nos travaux montrent que les donnĂ©es opportunistes peuvent ĂȘtre analysĂ©es Ă  l'aide de modĂšles de distribution d’espĂšces qui prennent en compte les contraintes liĂ©es au type de suivi utilisĂ© pour produire les donnĂ©es. Nos approches peuvent ĂȘtre utilisĂ©es par les gestionnaires pour optimiser la surveillance des grands carnivores, cibler des zones de prĂ©sence potentielles et contribuer Ă  proposer des mesures destinĂ©es Ă  attĂ©nuer les conflits.Large carnivores are recovering in Europe, due to an increasing forest cover, ungulate population and conservation measures. Tthis return poses challenges as carnivores can interact with livestock farming. Assessing their distributions can help to predict and mitigate conflicts with human activities. Because large carnivores are highly mobile, elusive and live at very low density, modeling their distributions presents several challenges due to 1) their imperfect detectability, 2) their dynamic ranges over time and 3) their monitoring at large scales consisting of opportunistic data without a formal measure of the sampling effort. In this thesis, we focused on two carnivore species, wolves (Canis lupus) and Eurasian lynx (Lynx lynx), to develop the methodological aspects related to the modelling of species distributions. We considered the application of occupancy models in the context of monitoring large carnivores in Europe. These models allow the establishment of a link between the species’ presence and environmental covariates while accounting for imperfect detectability, in order to establish the proportion of a study area occupied by the species.We first assessed wolf range dynamics in France from 1994 to 2016, while accounting for species imperfect detection and showed the importance of accounting for time- and space-varying sampling effort using dynamic site-occupancy models.Second, acknowledging that false positives may occur when monitoring rare species, we showcased a dynamic occupancy model that simultaneously accounts for false negatives and positives to jointly analyze data that include both unambiguous detections and ambiguous detections. The analysis of data on the Eurasian lynx in Alpine countries suggested that incorporating ambiguous detections produced more precise estimates of the ecological parameters.Third, we developed a model accounting for heterogeneity in detection while dealing with false positives. Applying our new approach to a case study with grey wolves in France, we demonstrated that heterogeneity in wolf detection was due to a heterogeneous sampling effort across space.Fourth, to deal with multiple data sources, we developed a Poisson point process approach which allows the inclusion of different data sources when building SDMs. By doing so, we also answered the question about which source(s) of information would provide most of the information when monitoring the lynx in Norway.Fifth and finally, to understand the underlying mechanisms of the colonization of wolves in France, we developed a statistical framework for estimating spatiotemporal occupancy and abundance dynamics using the ecological diffusion framework. We demonstrated the potential of our approach to predict the potential future distribution of wolves in the short term, an element that could contribute to target management areas or focus on areas of potential conflict.Overall our work shows that opportunistic data can be analyzed with species distribution models that control for issues linked to the type of monitoring used to produce the data. Our approaches have the potential for being used by decision-makers to optimize the monitoring of large carnivores and to target sites where carnivores are likely to occur and mitigate conflicts

    Modélisation statistique de la distribution des grands carnivores en Europe

    No full text
    Large carnivores are recovering in Europe, due to an increasing forest cover, ungulate population and conservation measures. Tthis return poses challenges as carnivores can interact with livestock farming. Assessing their distributions can help to predict and mitigate conflicts with human activities. Because large carnivores are highly mobile, elusive and live at very low density, modeling their distributions presents several challenges due to 1) their imperfect detectability, 2) their dynamic ranges over time and 3) their monitoring at large scales consisting of opportunistic data without a formal measure of the sampling effort. In this thesis, we focused on two carnivore species, wolves (Canis lupus) and Eurasian lynx (Lynx lynx), to develop the methodological aspects related to the modelling of species distributions. We considered the application of occupancy models in the context of monitoring large carnivores in Europe. These models allow the establishment of a link between the species’ presence and environmental covariates while accounting for imperfect detectability, in order to establish the proportion of a study area occupied by the species.We first assessed wolf range dynamics in France from 1994 to 2016, while accounting for species imperfect detection and showed the importance of accounting for time- and space-varying sampling effort using dynamic site-occupancy models.Second, acknowledging that false positives may occur when monitoring rare species, we showcased a dynamic occupancy model that simultaneously accounts for false negatives and positives to jointly analyze data that include both unambiguous detections and ambiguous detections. The analysis of data on the Eurasian lynx in Alpine countries suggested that incorporating ambiguous detections produced more precise estimates of the ecological parameters.Third, we developed a model accounting for heterogeneity in detection while dealing with false positives. Applying our new approach to a case study with grey wolves in France, we demonstrated that heterogeneity in wolf detection was due to a heterogeneous sampling effort across space.Fourth, to deal with multiple data sources, we developed a Poisson point process approach which allows the inclusion of different data sources when building SDMs. By doing so, we also answered the question about which source(s) of information would provide most of the information when monitoring the lynx in Norway.Fifth and finally, to understand the underlying mechanisms of the colonization of wolves in France, we developed a statistical framework for estimating spatiotemporal occupancy and abundance dynamics using the ecological diffusion framework. We demonstrated the potential of our approach to predict the potential future distribution of wolves in the short term, an element that could contribute to target management areas or focus on areas of potential conflict.Overall our work shows that opportunistic data can be analyzed with species distribution models that control for issues linked to the type of monitoring used to produce the data. Our approaches have the potential for being used by decision-makers to optimize the monitoring of large carnivores and to target sites where carnivores are likely to occur and mitigate conflicts.Les grands carnivores recolonisent l’Europe grĂące Ă  une augmentation des forĂȘts et des populations d'ongulĂ©s sauvages ainsi que des mesures de conservation. Or, les carnivores entrent en interactions avec les activitĂ©s humaines telles que l’élevage. Quantifier leur distribution peut aider Ă  situer les impacts sur ces activitĂ©s. Ces espĂšces sont trĂšs mobiles, difficiles Ă  observer et vivent Ă  de faibles densitĂ©s. La modĂ©lisation de leur distribution prĂ©sente plusieurs dĂ©fis en raison 1) de leur dĂ©tectabilitĂ© imparfaite, 2) de leur distribution dynamique dans le temps et 3) du suivi Ă  grande Ă©chelle basĂ© sur la collecte de donnĂ©es opportunistes sans mesure formelle de l'effort d'Ă©chantillonnage. Dans cette thĂšse, nous nous sommes concentrĂ©s sur deux espĂšces de grands carnivores, le loup et le lynx borĂ©al, pour dĂ©velopper les mĂ©thodologies liĂ©es Ă  la modĂ©lisation de la distribution d’espĂšces. Nous avons explorĂ© l’application des modĂšles d’occupancy dans le contexte du suivi des grands carnivores en Europe. Ces modĂšles Ă©tablissent le lien entre la prĂ©sence d’une espĂšce et l’environnement dans le but d’établir la proportion d'une zone d'Ă©tude que l’espĂšce occupe, tout en prenant en compte une dĂ©tectabilitĂ© imparfaite.Plus prĂ©cisĂ©ment, nous avons d'abord Ă©valuĂ© la dynamique de la distribution des loups en France de 1994 Ă  2016, tout en prenant en compte leur dĂ©tection imparfaite. Nous avons montrĂ© l'importance de prendre en compte l’effort d'Ă©chantillonnage variant dans le temps et dans l'espace Ă  l’aide de de modĂšles d’occupancy dynamique.DeuxiĂšmement, comme des faux positifs peuvent ĂȘtre prĂ©sents lors de la surveillance d'espĂšces rares, nous avons dĂ©veloppĂ© un modĂšle dynamique d’occupancy qui tenait compte simultanĂ©ment des faux nĂ©gatifs et des faux positifs pour analyser conjointement des donnĂ©es qui contenaient Ă  la fois des dĂ©tections certaines et des dĂ©tections incertaines. L'analyse des donnĂ©es sur le lynx borĂ©al dans les pays alpins a suggĂ©rĂ© que l'incorporation de dĂ©tections incertaines produisait des estimations des paramĂštres Ă©cologiques plus prĂ©cises.TroisiĂšmement, nous avons dĂ©veloppĂ© un modĂšle qui prenait en compte l'hĂ©tĂ©rogĂ©nĂ©itĂ© de la dĂ©tection tout en traitant les faux positifs. En appliquant notre nouvelle approche au loup en France, nous avons dĂ©montrĂ© que l'hĂ©tĂ©rogĂ©nĂ©itĂ© de la dĂ©tection du loup Ă©tait principalement due Ă  un effort d'Ă©chantillonnage hĂ©tĂ©rogĂšne dans l'espace.QuatriĂšmement, pour traiter des sources de donnĂ©es multiples, nous avons dĂ©veloppĂ© un modĂšle de processus ponctuel de Poisson qui permettait l'inclusion de diffĂ©rentes sources de donnĂ©es lors de la construction des SDMs. Nous avons montrĂ© comment la combinaison des donnĂ©es sur la distribution permettait d’optimiser un suivi en rĂ©pondant Ă  la question de savoir quelle(s) source(s) d'information apporterait l’essentiel de l’information lors du suivi du lynx en NorvĂšge.CinquiĂšmement, pour comprendre les mĂ©canismes sous-jacents de la colonisation des loups en France, nous avons dĂ©veloppĂ© un cadre statistique pour estimer l'occupation spatio-temporelle et la dynamique des effectifs en utilisant le cadre de diffusion Ă©cologique. Nous avons montrĂ© le potentiel de notre approche pour prĂ©dire la distribution future potentielle du loup Ă  court terme, un Ă©lĂ©ment qui pourrait contribuer Ă  cibler des zones de gestion ou se concentrer sur des zones de conflit potentiel.Dans l'ensemble, nos travaux montrent que les donnĂ©es opportunistes peuvent ĂȘtre analysĂ©es Ă  l'aide de modĂšles de distribution d’espĂšces qui prennent en compte les contraintes liĂ©es au type de suivi utilisĂ© pour produire les donnĂ©es. Nos approches peuvent ĂȘtre utilisĂ©es par les gestionnaires pour optimiser la surveillance des grands carnivores, cibler des zones de prĂ©sence potentielles et contribuer Ă  proposer des mesures destinĂ©es Ă  attĂ©nuer les conflits

    A mechanistic-statistical species distribution model to explain and forecast wolf (Canis lupus) colonization in South-Eastern France

    No full text
    National audienceSpecies distribution models (SDMs) are important statistical tools for ecologists to understand and predict species range. However, standard SDMs do not explicitly incorporate dynamic processes like dispersal. This limitation may lead to bias in inference about species distribution. Here, we adopt the theory of ecological diffusion that has recently been introduced in statistical ecology to incorporate spatio-temporal processes in ecological models. As a case study, we considered the wolf (Canis lupus) that has been recolonizing Eastern France naturally through dispersal from the Apennines since the early 90's. Using partial differential equations for modeling species diffusion and growth in a fragmented landscape, we develop a mechanistic-statistical spatio-temporal model accounting for ecological diffusion, logistic growth and imperfect species detection. We conduct a simulation study and show the ability of our model to i) estimate ecological parameters in various situations with contrasted species detection probability and number of surveyed sites and ii) forecast the distribution into the future. We found that the growth rate of the wolf population in France was explained by the proportion of forest cover, that diffusion was influenced by human density and that species detectability increased with increasing survey effort. Using the parameters estimated from the 2007-2015 period, we then forecasted wolf distribution in 2016 and found good agreement with the actual detections made that year. Our approach may be useful for managing species that interact with human activities to anticipate potential conflicts

    Studying Species Demography and Distribution in Natural Conditions: Hidden Markov Models

    No full text
    International audienceThis chapter shows how hidden Markov models (HMMs) can be used to develop capture–recapture and occupancy models, traditionally used to study the dynamics of populations and the distribution of species in a context of imperfect detection. It shows how the HMM formulation permits the estimation of hidden variables in two different case studies. These case studies include: estimating the prevalence of dog–wolf hybrids with uncertain individual identification; and estimating the distribution of a wolf population with species identification errors and heterogeneous detection. The hidden variables encountered in the study of animal populations are living/dead; developmental states, which are generally discrete, such as sexual maturity; epidemiological states; or social states. HMM will be used to model species distribution in a case featuring identification errors and heterogeneous detection. The main advantage of the HMM approach lies in the ability to infer the ecological states of individuals and species which are partially observable: these are hidden variables

    Estimer l’effort d’échantillonnage de rĂ©seaux participatifs : l’exemple du rĂ©seau Loup-lynx

    No full text
    International audienceLes rĂ©seaux participatifs prĂ©sentent l’avantage d’avoir une couverture performante pour Ă©chantillonner les espĂšces Ă  large Ă©chelle. En revanche, ils souffrent souvent d’un dĂ©ficit de mesure de l’effort, pourtant nĂ©cessaire aux analyses de donnĂ©es. Ici, nous utilisons la distance entre les correspondants et les indices qu'ils ont trouvĂ©s pour estimer l'effort d'Ă©chantillonnage du rĂ©seau Loup-lynx

    Climate matching and anthropogenic factors contribute to the colonization and extinction of local populations during avian invasions

    Get PDF
    AIM: Concern about the impacts of biological invasions has generated a great deal of interest in understanding factors that determine invasion success. Most of our current knowledge comes from static approaches that use spatial patterns as a proxy of temporal processes. These approaches assume that species are present in areas where environmental conditions are the most favourable. However, this assumption is problematic when applied to dynamic processes such as species expansions when equilibrium has not been reached. LOCATION: Iberian Peninsula. TAXON: Birds. METHODS: In our work, we analyse the roles played by human activities, climatic matching and spatial connectivity on the two main underlying processes shaping the spread of invasive species (i.e. colonization and extinction) using a dynamic modelling approach. We use a large data set that has recorded the occurrence of two invasive bird speciesĂąthe ringĂąnecked (Psittacula krameri) and the monk (Myiopsitta monachus) parakeetsĂąin the Iberian Peninsula from 1991 to 2016. RESULTS: Human activities and climate matching play a role on species range dynamics. Human influence and urbanization were the most relevant factors explaining colonization. Additionally, an effect of climate matching was found. Persistence (the inverse of extinction) was mainly affected by human influence for the monk parakeet and by the extent of urban environments for the ringĂąnecked parakeet. MAIN CONCLUSIONS: Human activities play a major role not only on colonization of new locations, but also on persistence during range expansion. Additionally, natural processesĂąnotably climate matchingĂąalso affect new colonizations. These findings add to our understanding of the mechanisms that might allow alien species to expand their geographic range at new locations and might help to improve our capacity to assess invasion risks and impacts accurately

    Historic of detections of wolves per site per year

    No full text
    The rows of this matrix are the 3547 sites and the 23 columns are the 23 years from 1994 to 2016. For each line a 0 means that no detection occured and a 1 means that a detection occured
    corecore