25 research outputs found

    Morbidade e sobrevida em AIDS avançada no Rio de Janeiro, Brasil

    Get PDF
    Opportunistic diseases (OD) are the most common cause of death in AIDS patients. To access the incidence of OD and survival in advanced immunodeficiency, we included 79 patients with AIDS treated at Hospital Evandro Chagas (FIOCRUZ) from September 1997 to December 1999 with at least one CD4 countAs doenças oportunistas (DO) são a causa mais comum de morte em pacientes com AIDS. Para acessar a incidência de DO e a sobrevida na imunodeficiência avançada, foram incluídos 79 pacientes com AIDS tratados no Hospital Evandro Chagas (FIOCRUZ) no período de Setembro de 1997 a Dezembro de 1999, com ao menos uma contagem de células CD

    A schematic sampling protocol for contaminant monitoring in raptors

    Get PDF
    Birds of prey, owls and falcons are widely used as sentinel species in raptor biomonitoring programmes. A major current challenge is to facilitate large-scale biomonitoring by coordinating contaminant monitoring activities and by building capacity across countries. This requires sharing, dissemination and adoption of best practices addressed by the Networking Programme Research and Monitoring for and with Raptors in Europe (EURAPMON) and now being advanced by the ongoing international COST Action European Raptor Biomonitoring Facility. The present perspective introduces a schematic sampling protocol for contaminant monitoring in raptors. We provide guidance on sample collection with a view to increasing sampling capacity across countries, ensuring appropriate quality of samples and facilitating harmonization of procedures to maximize the reliability, comparability and interoperability of data. The here presented protocol can be used by professionals and volunteers as a standard guide to ensure harmonised sampling methods for contaminant monitoring in raptors

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore