13 research outputs found

    A review of constraints and solutions for collecting raptor samples and contextual data for a European Raptor Biomonitoring Facility

    Get PDF
    The COST Action ‘European Raptor Biomonitoring Facility’ (ERBFacility) aims to develop pan-European raptor biomonitoring in support of better chemicals management in Europe, using raptors as sentinel species. This presents a significant challenge involving a range of constraints that must be identified and addressed. The aims of this study were to: (1) carry out a comprehensive review of the constraints that may limit the gathering in the field of raptor samples and contextual data, and assess their relative importance across Europe; and (2) identify and discuss possible solutions to the key constraints that were identified. We applied a participatory approach to identify constraints and to discuss feasible solutions. Thirty-one constraints were identified, which were divided into four categories: legal, methodological, spatial coverage, and skills constraints. To assess the importance of the constraints and their possible solutions, we collected information through scientific workshops and by distributing a questionnaire to stakeholders in all the countries involved in ERBFacility. We obtained 74 answers to the questionnaire, from 24 of the 39 COST participating countries. The most important constraints identified were related to the collection of complex contextual data about sources of contamination, and the low number of existing raptor population national/regional monitoring schemes and ecological studies that could provide raptor samples. Legal constraints, such as permits to allow the collection of invasive samples, and skills constraints, such as the lack of expertise to practice necropsies, were also highlighted. Here, we present solutions for all the constraints identified, thus suggesting the feasibility of establishing a long-term European Raptor Sampling Programme as a key element of the planned European Raptor Biomonitoring Facility.This paper is based on work from COST Action European Raptor Biomonitoring Facility (COST Action CA16224) supported by COST (European Cooperation in Science and Technology), including a grant for a short-term scientific mission awarded to the lead author. COST is funded by the Horizon 2020 Framework Programme of the European Union. Silvia Espín was financially supported by Ministerio de Ciencia, Innovación y Universidades (Juan de la Cierva-Incorporación postdoctoral contract, IJCI-2017-34653).Peer reviewe

    Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine mussel

    Get PDF
    Oceanographic features shape the distributional and genetic patterns of marine species by interrupting or promoting connections among populations. Although general patterns commonly arise, distributional ranges and genetic structure are species-specific and do not always comply with the expected trends. By applying a multimarker genetic approach combined with Lagrangian particle simulations (LPS) we tested the hypothesis that oceanographic features along northeastern Atlantic and Mediterranean shores influence dispersal potential and genetic structure of the intertidal mussel Perna perna. Additionally, by performing environmental niche modelling we assessed the potential and realized niche of P. perna along its entire native distributional range and the environmental factors that best explain its realized distribution. Perna perna showed evidence of panmixia across > 4,000 km despite several oceanographic breaking points detected by LPS. This is probably the result of a combination of life history traits, continuous habitat availability and stepping-stone dynamics. Moreover, the niche modelling framework depicted minimum sea surface temperatures (SST) as the major factor shaping P. perna distributional range limits along its native areas. Forthcoming warming SST is expected to further change these limits and allow the species to expand its range polewards though this may be accompanied by retreat from warmer areas.Fundacao para a Ciencia e Tecnologia (FCT-MEC, Portugal) [UID/Multi/04326/2013, IF/01413/2014/CP1217/CT0004]; South African Research Chairs Initiative (SARChI) of the Department of Science and Technology; National Research Foundation; South African National Research Foundation (NRF); Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/85040/2012, SFRH/BPD/111003/2015]info:eu-repo/semantics/publishedVersio

    A review of constraints and solutions for collecting raptor samples and contextual data for a European raptor biomonitoring facility

    Get PDF
    The COST Action ‘European Raptor Biomonitoring Facility’ (ERBFacility) aims to develop pan-European raptor biomonitoring in support of better chemicals management in Europe, using raptors as sentinel species. This presents a significant challenge involving a range of constraints that must be identified and addressed. The aims of this study were to: (1) carry out a comprehensive review of the constraints that may limit the gathering in the field of raptor samples and contextual data, and assess their relative importance across Europe; and (2) identify and discuss possible solutions to the key constraints that were identified. We applied a participatory approach to identify constraints and to discuss feasible solutions. Thirty-one constraints were identified, which were divided into four categories: legal, methodological, spatial coverage, and skills constraints. To assess the importance of the constraints and their possible solutions, we collected information through scientific workshops and by distributing a questionnaire to stakeholders in all the countries involved in ERBFacility. We obtained 74 answers to the questionnaire, from 24 of the 39 COST participating countries. The most important constraints identified were related to the collection of complex contextual data about sources of contamination, and the low number of existing raptor population national/regional monitoring schemes and ecological studies that could provide raptor samples. Legal constraints, such as permits to allow the collection of invasive samples, and skills constraints, such as the lack of expertise to practice necropsies, were also highlighted. Here, we present solutions for all the constraints identified, thus suggesting the feasibility of establishing a long-term European Raptor Sampling Programme as a key element of the planned European Raptor Biomonitoring Facility

    Cost Benefit Analysis: Evaluation among the Millimetre Wavebands and Super High Frequency Bands of Small Cell 5G Networks

    No full text
    This article discusses the benefit-cost analysis aspects of millimetre wavebands (mmWaves) and Super High Frequency (SHF). The devaluation along the distance of the carrier-to-noise-plus-interference ratio with the coverage distance is assessed by considering two different path loss models, the two-slope urban micro Line-of-Sight (UMiLoS) for the SHF band (from the ITU-R 2135 Report) and the modified Friis propagation model, for frequencies above 24 GHz. The equivalent supported throughput is estimated at the 5.62, 28, 38, 60, and 73 GHz frequency bands, and the influence of carrier-to-noise- plus-interference ratio in the radio and network optimization process is explored. Mostly owing to the lessening caused by the behaviour of the two-slope propagation model for SHF band, the supported throughput at this band is higher than at the millimetre wavebands only for the longest cell lengths. The benefit cost analysis of these pico-cellular networks was analysed for regular cellular topologies by considering unlicensed spectrum. For shortest distances, we can distinguish an optimal of the revenue in percentage terms for values of the cell length, R ≈ 10 m for the millimitre wavebands, and for longest distances, an optimal of the revenue can be observed at R ≈ 550 m for the 5.62 GHz. It is possible to observe that, for the 5.62 GHz band, the profit is slightly inferior than for millimetre wavebands, for the shortest Rs, and starts to increase for cell lengths approximately equal to the ratio between the break-point distance and the co-channel reuse factor, achieving a maximum for values of R approximately equal to 550 m.This work is funded by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/EEA/50008/2020, COST CA 15104 IRACON, ORCIP and CONQUEST (CMU/ECE/0030/2017), TeamUp5G project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie project number 813391.info:eu-repo/semantics/acceptedVersio

    PROJETO ADIRA - TOPMAT - Modularidade, Standardização e Design-for-X - Resultados de casos de estudo

    No full text
    O presente documento insere-se no Projeto TOPMAT no âmbito da Aquisição e Desenvolvimento de Competências (Atividade 3) e tem como principal objetivo apresentar e divulgar os desenvolvimentos e resultados técnico-científicos inovadores obtidos no aprofundar de capacidades no domínio da modularidade, desenvolvendo casos de estudo que permitam perceber quais os aspetos mais relevantes e úteis de cada metodologia e métrica para auxiliar ao desenvolvimento de máquinas ADIRA. Na vertente da modularidade foram aplicadas metodologias que fazem uso do DSM (Design Structure Matrix), permitindo desenvolver índices e métricas para avaliar e comparar equipamentos, permitindo assim definir um rumo de desenvolvimento que fortaleça os aspetos mais positivos e minore as desvantagens. A inovadora Metodologia DfX – Design-for-eXcellence, desenvolvida pelo INEGI é apresentada com vista à sua aplicação e demonstração nos casos de estudo ADIRA, reforçando assim a aplicabilidade desta metodologia e proveito possível para o tipo de equipamentos a desenvolver pela ADIRA. A nova metodologia está alicerçada, como previsto nos objetivos do projeto, na abordagem modular de sistemas complexos e permite agregar a análise e avaliação simultânea de diferentes domínios de projeto (design).ADIRA MFS; COMPET

    Towards Industry 4.0: efficient and sustainable manufacturing leveraging MTEF – MTEF-MAESTRI total efficiency framework

    No full text
    An overview of the work under development within the EU-funded collaborative project MAESTRI is presented in this chapter. The project provides a framework of new Industrial methodology, integrating several tools and methods, to help industries facing the fourth industrial revolution. This concept, called the MAESTRI Total Efficiency Framework (MTEF), aims to advance the sustainability of manufacturing and process industries by providing a management system in the form of a flexible and scalable platform and methodology. The MTEF is based on four pillars: a) an effective management system targeted at continuous process improvement; b) Efficiency assessment tools to support improvements, optimization strategies and decision-making support; c) Industrial Symbiosis paradigm to gain value from waste and energy exchange; d) an Internet-of-Things infrastructure to support easy integration and data exchange among shop-floor, business systems and MAESTRI tools
    corecore