436 research outputs found

    Processing and analysis methods for transonic cavity flow

    Get PDF
    This paper focuses on the localisation of noise sources in transonic cavity flows. Beamforming is used to estimate the pressure fluctuations inside a resonant transonic cavity, showing the localisation of the main sources of noise using an acoustic array and also combining it with a mean flow-field. The influence of the microphone array position, density, and shape is investigated. The presented method models the noise propagation with simple assumptions that are easily applicable to wind tunnel testing and may help localise the noise sources from complex geometries without intrusive methods

    The XIIIth Banff Conference on Allograft Pathology: The Banff 2015 Heart Meeting Report: Improving Antibody-Mediated Rejection Diagnostics: Strengths, Unmet Needs, and Future Directions.

    Get PDF
    The 13th Banff Conference on Allograft Pathology was held in Vancouver, British Columbia, Canada from October 5 to 10, 2015. The cardiac session was devoted to current diagnostic issues in heart transplantation with a focus on antibody-mediated rejection (AMR) and small vessel arteriopathy. Specific topics included the strengths and limitations of the current rejection grading system, the central role of microvascular injury in AMR and approaches to semiquantitative assessment of histopathologic and immunophenotypic indicators, the role of AMR in the development of cardiac allograft vasculopathy, the important role of serologic antibody detection in the management of transplant recipients, and the potential application of new molecular approaches to the elucidation of the pathophysiology of AMR and potential for improving the current diagnostic system. Herein we summarize the key points from the presentations, the comprehensive, open and wide-ranging multidisciplinary discussion that was generated, and considerations for future endeavors

    The calcilytic agent NPS 2143 rectifies hypocalcemia in a mouse model with an activating calcium-sensing-receptor (CaSR) mutation:relevance to autosomal dominant hypocalcemia type 1 (ADH1)

    Get PDF
    Autosomal dominant hypocalcemia type 1 (ADH1) is caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR) and may lead to symptomatic hypocalcemia, inappropriately low serum parathyroid hormone (PTH) concentrations and hypercalciuria. Negative allosteric CaSR modulators, known as calcilytics, have been shown to normalise the gain-of-function associated with ADH-causing CaSR mutations in vitro and represent a potential targeted therapy for ADH1. However, the effectiveness of calcilytic drugs for the treatment of ADH1-associated hypocalcemia remains to be established. We have investigated NPS 2143, a calcilytic compound, for the treatment of ADH1 by in vitro and in vivo studies involving a mouse model, known as Nuf, which harbors a gain-of-function CaSR mutation, Leu723Gln. Wild-type (Leu723) and Nuf mutant (Gln723) CaSRs were expressed in HEK293 cells and the effect of NPS 2143 on their intracellular calcium responses determined by flow cytometry. NPS 2143 was also administered as a single intraperitoneal bolus to wild-type and Nuf mice and plasma concentrations of calcium and PTH, and urinary calcium excretion measured. In vitro administration of NPS 2143 decreased the intracellular calcium responses of HEK293 cells expressing the mutant Gln723 CaSR in a dose-dependent manner, thereby rectifying the gain-of-function associated with the Nuf mouse CaSR mutation. Intraperitoneal injection of NPS 2143 in Nuf mice led to significant increases in plasma calcium and PTH without elevating urinary calcium excretion. These studies of a mouse model with an activating CaSR mutation demonstrate NPS 2143 to normalize the gain-of-function causing ADH1, and improve the hypocalcemia associated with this disorder

    Proposed Definitions of Antibody-Mediated Rejection for Use as a Clinical Trial Endpoint in Kidney Transplantation

    Full text link
    Antibody-mediated rejection (AMR) is caused by antibodies that recognize donor human leukocyte antigen (HLA) or other targets. As knowledge of AMR pathophysiology has increased, a combination of factors is necessary to confirm the diagnosis and phenotype. However, frequent modifications to the AMR definition have made it difficult to compare data and evaluate associations between AMR and graft outcome. The present paper was developed following a Broad Scientific Advice request from the European Society for Organ Transplantation (ESOT) to the European Medicines Agency (EMA), which explored whether updating guidelines on clinical trial endpoints would encourage innovations in kidney transplantation research. ESOT considers that an AMR diagnosis must be based on a combination of histopathological factors and presence of donor-specific HLA antibodies in the recipient. Evidence for associations between individual features of AMR and impaired graft outcome is noted for microvascular inflammation scores ≥2 and glomerular basement membrane splitting of >10% of the entire tuft in the most severely affected glomerulus. Together, these should form the basis for AMR-related endpoints in clinical trials of kidney transplantation, although modifications and restrictions to the Banff diagnostic definition of AMR are proposed for this purpose. The EMA provided recommendations based on this Broad Scientific Advice request in December 2020; further discussion, and consensus on the restricted definition of the AMR endpoint, is required.Copyright © 2022 Roufosse, Becker, Rabant, Seron, Bellini, Böhmig, Budde, Diekmann, Glotz, Hilbrands, Loupy, Oberbauer, Pengel, Schneeberger and Naesens

    Proposed Definitions of T Cell-Mediated Rejection and Tubulointerstitial Inflammation as Clinical Trial Endpoints in Kidney Transplantation

    Full text link
    The diagnosis of acute T cell-mediated rejection (aTCMR) after kidney transplantation has considerable relevance for research purposes. Its definition is primarily based on tubulointerstitial inflammation and has changed little over time; aTCMR is therefore a suitable parameter for longitudinal data comparisons. In addition, because aTCMR is managed with antirejection therapies that carry additional risks, anxieties, and costs, it is a clinically meaningful endpoint for studies. This paper reviews the history and classifications of TCMR and characterizes its potential role in clinical trials: a role that largely depends on the nature of the biopsy taken (indication vs protocol), the level of inflammation observed (e.g., borderline changes vs full TCMR), concomitant chronic lesions (chronic active TCMR), and the therapeutic intervention planned. There is ongoing variability-and ambiguity-in clinical monitoring and management of TCMR. More research, to investigate the clinical relevance of borderline changes (especially in protocol biopsies) and effective therapeutic strategies that improve graft survival rates with minimal patient morbidity, is urgently required. The present paper was developed from documentation produced by the European Society for Organ Transplantation (ESOT) as part of a Broad Scientific Advice request that ESOT submitted to the European Medicines Agency for discussion in 2020. This paper proposes to move toward refined definitions of aTCMR and borderline changes to be included as primary endpoints in clinical trials of kidney transplantation.Copyright © 2022 Seron, Rabant, Becker, Roufosse, Bellini, Böhmig, Budde, Diekmann, Glotz, Hilbrands, Loupy, Oberbauer, Pengel, Schneeberger and Naesens

    Fcγ Receptors in Solid Organ Transplantation.

    Get PDF
    In the current era, one of the major factors limiting graft survival is chronic antibody-mediated rejection (ABMR), whilst patient survival is impacted by the effects of immunosuppression on susceptibility to infection, malignancy and atherosclerosis. IgG antibodies play a role in all of these processes, and many of their cellular effects are mediated by Fc gamma receptors (FcγRs). These surface receptors are expressed by most immune cells, including B cells, natural killer cells, dendritic cells and macrophages. Genetic variation in FCGR genes is likely to affect susceptibility to ABMR and to modulate the physiological functions of IgG. In this review, we discuss the potential role played by FcγRs in determining outcomes in solid organ transplantation, and how genetic polymorphisms in these receptors may contribute to variations in transplant outcome.MRC is supported by the NIHR Cambridge BRC, the NIHR Blood and Transplant Research Unit (Cambridge) and by a Medical Research Council New Investigator Grant (MR/N024907/1).This is the final version of the article. It first appeared from Springer via https://doi.org/10.1007/s40472-016-0116-

    Clinical risk stratification of paediatric renal transplant recipients using C1q and C3d fixing of de novo donor-specific antibodies

    Get PDF
    Introduction: We have previously shown that children who developed de novo donor-specific human leukocyte antigen (HLA) antibodies (DSA) had greater decline in allograft function. We hypothesised that patients with complement-activating DSA would have poorer renal allograft outcomes. Methods: A total of 75 children developed DSA in the original study. The first positive DSA sample was subsequently tested for C1q and C3d fixing. The primary event was defined as 50% reduction from baseline estimated glomerular filtration rate and was analysed using the Kaplan–Meier estimator. Results: Of 65 patients tested, 32 (49%) and 23 (35%) tested positive for C1q and C3d fixing, respectively. Of the 32 C1q-positive (c1q+) patients, 13 (41%) did not show concomitant C3d fixing. The mean fluorescence intensity values of the original immunoglobulin G DSA correlated poorly with complement-fixing positivity (C1q: adjusted R2 0.072; C3d: adjusted R2 0.11; p < 0.05). C1q+ antibodies were associated with acute tubulitis [0.75 ± 0.18 (C1q+) vs. 0.25 ± 0.08 (C1q−) episodes per patient (mean ± standard error of the mean; p < 0.05] but not with worse long-term renal allograft dysfunction (median time to primary event 5.9 (C1q+) vs. 6.4 (C1q−) years; hazard ratio (HR) 0.74; 95% confidence ratio (CI) 0.30–1.81; p = 0.58]. C3d-positive (C3d+) antibodies were associated with positive C4d histological staining [47% (C3d+) vs. 20% (C3d−); p = 0.04] and with significantly worse long-term allograft dysfunction [median time to primary event: 5.6 (C3d+) vs. 6.5 (C3d−) years; HR 0.38; 95% CI 0.15–0.97; p = 0.04]. Conclusion: Assessment of C3d fixing as part of prospective HLA monitoring can potentially aid stratification of patients at the highest risk of long-term renal allograft dysfunction
    corecore