57 research outputs found

    Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene

    Get PDF
    Expression of hTERT is the major limiting factor for telomerase activity. We previously showed that methylation of the hTERT promoter is necessary for its transcription and that CTCF can repress hTERT transcription by binding to the first exon. In this study, we used electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) to show that CTCF does not bind the methylated first exon of hTERT. Treatment of telomerase-positive cells with 5-azadC led to a strong demethylation of hTERT 5′-regulatory region, reactivation of CTCF binding and downregulation of hTERT. Although complete hTERT promoter methylation was associated with full transcriptional repression, detailed mapping showed that, in telomerase-positive cells, not all the CpG sites were methylated, especially in the promoter region. Using a methylation cassette assay, selective demethylation of 110 bp within the core promoter significantly increased hTERT transcriptional activity. This study underlines the dual role of DNA methylation in hTERT transcriptional regulation. In our model, hTERT methylation prevents binding of the CTCF repressor, but partial hypomethylation of the core promoter is necessary for hTERT expression

    BORIS/CTCFL-mediated transcriptional regulation of the hTERT telomerase gene in testicular and ovarian tumor cells

    Get PDF
    Telomerase activity, not detectable in somatic cells but frequently activated during carcinogenesis, confers immortality to tumors. Mechanisms governing expression of the catalytic subunit hTERT, the limiting factor for telomerase activity, still remain unclear. We previously proposed a model in which the binding of the transcription factor CTCF to the two first exons of hTERT results in transcriptional inhibition in normal cells. This inhibition is abrogated, however, by methylation of CTCF binding sites in 85% of tumors. Here, we showed that hTERT was unmethylated in testicular and ovarian tumors and in derivative cell lines. We demonstrated that CTCF and its paralogue, BORIS/CTCFL, were both present in the nucleus of the same cancer cells and bound to the first exon of hTERT in vivo. Moreover, exogenous BORIS expression in normal BORIS-negative cells was sufficient to activate hTERT transcription with an increasing number of cell passages. Thus, expression of BORIS was sufficient to allow hTERT transcription in normal cells and to counteract the inhibitory effect of CTCF in testicular and ovarian tumor cells. These results define an important contribution of BORIS to immortalization during tumorigenesis

    The Structural Complexity of the Human BORIS Gene in Gametogenesis and Cancer

    Get PDF
    BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions.Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF) in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST) promoter and the IGF2/H19 imprinting control region (ICR), it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258) in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates.The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may be evolutionarily tied to unique aspects of primate speciation

    BORIS, a paralogue of the transcription factor, CTCF, is aberrantly expressed in breast tumours

    Get PDF
    BORIS (for brother of the regulator of imprinted sites), a paralogue of the transcription factor, CTCF, is a novel member of the cancer-testis antigen family. The aims of the present study were as follows: (1) to investigate BORIS expression in breast cells and tumours using immunohistochemical staining, western and real-time RT–PCR analyses and (2) assess potential correlation between BORIS levels in tumours with clinical/pathological parameters. BORIS was detected in all 18 inspected breast cell lines, but not in a primary normal breast cell culture. In 70.7% (41 of 58 cases) BORIS was observed in breast tumours. High levels of BORIS correlated with high levels of progesterone receptor (PR) and oestrogen receptor (ER). The link between BORIS and PR/ER was further confirmed by the ability of BORIS to activate the promoters of the PR and ER genes in the reporter assays. Detection of BORIS in a high proportion of breast cancer patients implies potential practical applications of BORIS as a molecular biomarker of breast cancer. This may be important for diagnosis of the condition and for the therapeutic use of BORIS. The ability of BORIS to activate promoters of the RP and ER genes points towards possible involvement of BORIS in the establishment, progression and maintenance of breast tumours

    Integrative DNA Methylation and Gene Expression Analyses Identify DNA Packaging and Epigenetic Regulatory Genes Associated with Low Motility Sperm

    Get PDF
    In previous studies using candidate gene approaches, low sperm count (oligospermia) has been associated with altered sperm mRNA content and DNA methylation in both imprinted and non-imprinted genes. We performed a genome-wide analysis of sperm DNA methylation and mRNA content to test for associations with sperm function. (NCBI 1788). There was a trend among altered expression of these epigenetic regulatory genes and RPMM DNA methylation class.Using integrative genome-wide approaches we identified CpG methylation profiles and mRNA alterations associated with low sperm motility

    Widespread Expression of BORIS/CTCFL in Normal and Cancer Cells

    Get PDF
    BORIS (CTCFL) is the paralog of CTCF (CCCTC-binding factor; NM_006565), a ubiquitously expressed DNA-binding protein with diverse roles in gene expression and chromatin organisation. BORIS and CTCF have virtually identical zinc finger domains, yet display major differences in their respective C- and N-terminal regions. Unlike CTCF, BORIS expression has been reported only in the testis and certain malignancies, leading to its classification as a “cancer-testis” antigen. However, the expression pattern of BORIS is both a significant and unresolved question in the field of DNA binding proteins. Here, we identify BORIS in the cytoplasm and nucleus of a wide range of normal and cancer cells. We compare the localization of CTCF and BORIS in the nucleus and demonstrate enrichment of BORIS within the nucleolus, inside the nucleolin core structure and adjacent to fibrillarin in the dense fibrillar component. In contrast, CTCF is not enriched in the nucleolus. Live imaging of cells transiently transfected with GFP tagged BORIS confirmed the nucleolar accumulation of BORIS. While BORIS transcript levels are low compared to CTCF, its protein levels are readily detectable. These findings show that BORIS expression is more widespread than previously believed, and suggest a role for BORIS in nucleolar function

    The D4Z4 Macrosatellite Repeat Acts as a CTCF and A-Type Lamins-Dependent Insulator in Facio-Scapulo-Humeral Dystrophy

    Get PDF
    Both genetic and epigenetic alterations contribute to Facio-Scapulo-Humeral Dystrophy (FSHD), which is linked to the shortening of the array of D4Z4 repeats at the 4q35 locus. The consequence of this rearrangement remains enigmatic, but deletion of this 3.3-kb macrosatellite element might affect the expression of the FSHD-associated gene(s) through position effect mechanisms. We investigated this hypothesis by creating a large collection of constructs carrying 1 to >11 D4Z4 repeats integrated into the human genome, either at random sites or proximal to a telomere, mimicking thereby the organization of the 4q35 locus. We show that D4Z4 acts as an insulator that interferes with enhancer–promoter communication and protects transgenes from position effect. This last property depends on both CTCF and A-type Lamins. We further demonstrate that both anti-silencing activity of D4Z4 and CTCF binding are lost upon multimerization of the repeat in cells from FSHD patients compared to control myoblasts from healthy individuals, suggesting that FSHD corresponds to a gain-of-function of CTCF at the residual D4Z4 repeats. We propose that contraction of the D4Z4 array contributes to FSHD physio-pathology by acting as a CTCF-dependent insulator in patients

    Evolutionary Diversification of SPANX-N Sperm Protein Gene Structure and Expression

    Get PDF
    The sperm protein associated with nucleus in the X chromosome (SPANX) genes cluster at Xq27 in two subfamilies, SPANX-A/D and SPANX-N. SPANX-A/D is specific for hominoids and is fairly well characterized. The SPANX-N gave rise to SPANX-A/D in the hominoid lineage ∼7 MYA. Given the proposed role of SPANX genes in spermatogenesis, we have extended studies to SPANX-N gene evolution, variation, regulation of expression, and intra-sperm localization. By immunofluorescence analysis, SPANX-N proteins are localized in post-meiotic spermatids exclusively, like SPANX-A/D. But in contrast to SPANX-A/D, SPANX-N are found in all ejaculated spermatozoa rather than only in a subpopulation, are localized in the acrosome rather than in the nuclear envelope, and are expressed at a low level in several nongametogenic adult tissues as well as many cancers. Presence of a binding site for CTCF and its testis-specific paralogue BORIS in the SPANX promoters suggests, by analogy to MAGE-A1 and NY-ESO-1, that their activation in spermatogenesis is mediated by the programmed replacement of CTCF by BORIS. Based on the relative density of CpG, the more extended expression of SPANX-N compared to SPANX-A/D in nongametogenic tissues is likely attributed to differences in promoter methylation. Our findings suggest that the recent duplication of SPANX genes in hominoids was accompanied by different localization of SPANX-N proteins in post-meiotic sperm and additional expression in several nongonadal tissues. This suggests a corresponding functional diversification of SPANX gene families in hominoids. SPANX proteins thus provide unique targets to investigate their roles in the function of spermatozoa, selected malignancies, and for SPANX-N, in other tissues as well

    CTCF cis-Regulates Trinucleotide Repeat Instability in an Epigenetic Manner: A Novel Basis for Mutational Hot Spot Determination

    Get PDF
    At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting “instability elements,” and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF—a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability

    Antagonism between DNA and H3K27 Methylation at the Imprinted Rasgrf1 Locus

    Get PDF
    At the imprinted Rasgrf1 locus in mouse, a cis-acting sequence controls DNA methylation at a differentially methylated domain (DMD). While characterizing epigenetic marks over the DMD, we observed that DNA and H3K27 trimethylation are mutually exclusive, with DNA and H3K27 methylation limited to the paternal and maternal sequences, respectively. The mutual exclusion arises because one mark prevents placement of the other. We demonstrated this in five ways: using 5-azacytidine treatments and mutations at the endogenous locus that disrupt DNA methylation; using a transgenic model in which the maternal DMD inappropriately acquired DNA methylation; and by analyzing materials from cells and embryos lacking SUZ12 and YY1. SUZ12 is part of the PRC2 complex, which is needed for placing H3K27me3, and YY1 recruits PRC2 to sites of action. Results from each experimental system consistently demonstrated antagonism between H3K27me3 and DNA methylation. When DNA methylation was lost, H3K27me3 encroached into sites where it had not been before; inappropriate acquisition of DNA methylation excluded normal placement of H3K27me3, and loss of factors needed for H3K27 methylation enabled DNA methylation to appear where it had been excluded. These data reveal the previously unknown antagonism between H3K27 and DNA methylation and identify a means by which epigenetic states may change during disease and development
    corecore