7 research outputs found

    Detailed molecular and clinical investigation of a child with a partial deletion of chromosome 11 (Jacobsen syndrome)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Jacobsen syndrome (JBS) is a rare chromosomal disorder leading to multiple physical and mental impairment. This syndrome is caused by a partial deletion of chromosome 11, especially subband 11q24.1 has been proven to be involved. Clinical cases may easily escape diagnosis, however pancytopenia or thrombocytopenia may be indicative for JBS.</p> <p>Results</p> <p>We report a 7.5 years old boy presenting with speech development delay, hearing impairment and abnormal platelet function. High resolution SNP oligonucleotide microarray analysis revealed a terminal deletion of 11.4 Mb in size, in the area 11q24.1-11qter. This specific deletion encompasses around 170 genes. Other molecular techniques such as fluorescence in situ hybridization and multiplex ligation-dependent probe amplification were used to confirm the array-result.</p> <p>Discussion</p> <p>Our results suggest that the identification and detailed analysis of similar patients with abnormal platelet function and otherwise mild clinical features will contribute to identification of more patients with 11q deletion and JBS.</p

    The use of array-CGH in a cohort of Greek children with developmental delay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic diagnosis of mental retardation (MR) is difficult to establish and at present many cases remain undiagnosed and unexplained. Standard karyotyping has been used as one of the routine techniques for the last decades. The implementation of Array Comparative Genomic Hybridization (array-CGH) has enabled the analysis of copy number variants (CNVs) with high resolution. Major cohort studies attribute 11% of patients with unexplained mental retardation to clinically significant CNVs. Here we report the use of array-CGH for the first time in a Greek cohort. A total of 82 children of Greek origin with mean age 4.9 years were analysed in the present study. Patients with visible cytogenetic abnormalities ascertained by standard karyotyping as well as those with subtelomeric abnormalities determined by Multiplex Ligation-dependent Probe Amplification (MLPA) or subtelomeric FISH had been excluded.</p> <p>Results</p> <p>Fourteen CNVs were detected in the studied patients. In nine patients (11%) the chromosomal aberrations were inherited from one of the parents. One patients showed two duplications, a 550 kb duplication in 3p14.1 inherited from the father and a ~1.1 Mb duplication in (22)(q13.1q13.2) inherited from the mother. Although both parents were phenotypically normal, it cannot be excluded that the dual duplication is causative for the patient's clinical profile including dysmorphic features and severe developmental delay. Furthermore, three <it>de novo </it>clinically significant CNVs were detected (3.7%). There was a ~6 Mb triplication of 18q21.1 in a girl 5 years of age with moderate MR and mild dysmorphic features and a ~4.8 Mb duplication at (10)(q11.1q11.21) in a 2 years old boy with severe MR, multiple congenital anomalies, severe central hypotonia, and ataxia. Finally, in a 3 year-old girl with microcephaly and severe hypotonia a deletion in (2)(q31.2q31.3) of about ~3.9 Mb was discovered. All CNVs were confirmed by Fluorescence <it>in situ </it>hybridization (FISH). For the remaining 9 patients the detected CNVs (inherited duplications or deletions of 80 kb to 800 kb in size) were probably not associated with the clinical findings.</p> <p>Conclusions</p> <p>Genomic microarrays have within the recent years proven to be a highly useful tool in the investigation of unexplained MR. The cohorts reported so far agree on an around 11% diagnostic yield of clinically significant CNVs in patients with unexplained MR. Various publicly available databases have been created for the interpretation of identified CNVs and parents are analyzed in case a rare CNV is identified in the child. We have conducted a study of Greek patients with unexplained MR and confirmed the high diagnostic value of the previous studies. It is important that the technique becomes available also in less developed countries when the cost of consumables will be reduced.</p

    Human Papillomavirus (HPV) Genotyping of Cutaneous Warts in Greek Children

    No full text
    The human papillomavirus (HPV) infects the squamous epithelium of the skin and produces common warts, plantar warts, and flat warts, which occur commonly on the hands, face, and feet. The objective of this study was to determine the presence of HPV in warts in children in order to associate the virus with the disease. Sixty-eight children with clinically diagnosed cutaneous warts were recruited. Skin biopsy samples were examined and DNA was extracted using a commercially available kit. To distinguish between the HPV types, we used a specific pair of primers to amplify the HPV DNA. Polymerase chain reaction amplification of the L1 region was followed by restriction fragment length polymorphism analysis and Luminex xMAP technology. HPV 57 was the predominant type in our study, although the detection of the high-risk HPV type 16 in 33% of our positive samples indicates the presence of mucosal high-risk HPV types in the skin of children. It seems that the newly introduced Luminex assay maximized the discrimination of genotypes even in the case of multiple HPV infections. Or findings also suggest the presence of high-risk HPV types in cutaneous warts

    Age-dependent dichotomous effect of superoxide dismutase Ala16Val polymorphism on oxidized LDL levels

    No full text
    We investigated the association between superoxide dismutase (SOD) Ala16Val polymorphism and the levels of oxidized LDL lipoprotein-C (ox-LDL-C) in two age-different Greek cohorts. Four hundred fifteen middle-aged (n = 147 females: 43.2 ± 13 years, n = 268 males: 43.3 ± 14 years) Caucasian Greek subjects consisted the middle aged cohort. One hundred seventy five elderly (n = 88 females: 79.9 ± 4 years; n = 87 males: 80.6 ± 4 years) were selected from the elderly cohort. Genotype data were obtained for all of them. Multiple linear regression analysis, stratified by gender and adjusted for age, smoking habits and body mass index as covariates, showed higher ox-LDL-C levels for the middle aged men with the Val/Val genotype, compared to the other allele (Ala/Ala and Ala/Val) carriers (65.9 ± 25.7 vs. 55.7 ± 20.5 mg/dl; standardized β coefficient = 0.192, P = 0.012). On the contrary, elderly women with the Val/Val genotype occurred with lower ox-LDL-C levels compared to the Ala/Ala or Ala/Val genotype (74.2 ± 22.1 vs. 86.5 ± 26.6 mg/dl; standardized β coefficient = -0.269, P = 0.015). The same trend was also recorded in elderly men, however without reaching statistical significance (standardized β coefficient = -0.187, P = 0.077). Moreover, elderly men and women with the Ala/Ala or Ala/Val genotype presented higher triglycerides levels compared to Val/Val (women: 145.2 ± 68.7 vs. 114.3 ± 34.3 mg/dl, P = 0.027; men: 147.8 ± 72.4 vs. 103.7 ± 38.0 mg/dl, P = 0.002). Additionally, middle aged men with the Val/Val genotype had higher HDL-C levels compared to the Ala allele carriers. The results suggest that SOD Ala16Val polymorphism is an age-dependent modulator of ox-LDL-C levels in middle-aged men and elderly women
    corecore