13 research outputs found

    Ecology impacts the decrease of Spirochaetes and Prevotella in the fecal gut microbiota of urban humans

    Get PDF
    Compared to the huge microbial diversity in most mammals, human gut microbiomes have lost diversity while becoming specialized for animal-based diets - especially compared to chimps, their genetically closest ancestors. The lowered microbial diversity within the gut of westernized populations has also been associated with different kinds of chronic inflammatory diseases in humans. To further deepen our knowledge on phylogenetic and ecologic impacts on human health and fitness, we established the herein presented biobank as well as its comprehensive microbiota analysis. In total, 368 stool samples from 38 different animal species, including Homo sapiens, belonging to four diverse mammalian orders were collected at seven different locations and analyzed by 16S rRNA gene amplicon sequencing. Comprehensive data analysis was performed to (i) determine the overall impact of host phylogeny vs. diet, location, and ecology and to (ii) examine the general pattern of fecal bacterial diversity across captive mammals and humans.By using a controlled study design with captive mammals we could verify that host phylogeny is the most dominant driver of mammalian gut microbiota composition. However, the effect of ecology appears to be able to overcome host phylogeny and should therefore be studied in more detail in future studies. Most importantly, our study could observe a remarkable decrease of Spirochaetes and Prevotella in westernized humans and platyrrhines, which is probably not only due to diet, but also to the social behavior and structure in these communities.Our study highlights the importance of phylogenetic relationship and ecology within the evolution of mammalian fecal microbiota composition. Particularly, the observed decrease of Spirochaetes and Prevotella in westernized communities might be associated to lifestyle dependent rapid evolutionary changes, potentially involved in the establishment of dysbiotic microbiomes, which promote the etiology of chronic diseases

    Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy.

    Get PDF
    Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT

    Intestinal protozoan infections shape fecal bacterial microbiota in children from Guinea-Bissau.

    No full text
    Intestinal parasitic infections, caused by helminths and protozoa, are globally distributed and major causes of worldwide morbidity. The gut microbiota may modulate parasite virulence and host response upon infection. The complex interplay between parasites and the gut microbiota is poorly understood, partly due to sampling difficulties in remote areas with high parasite burden. In a large study of children in Guinea-Bissau, we found high prevalence of intestinal parasites. By sequencing of the 16S rRNA genes of fecal samples stored on filter paper from a total of 1,204 children, we demonstrate that the bacterial microbiota is not significantly altered by helminth infections, whereas it is shaped by the presence of both pathogenic and nonpathogenic protozoa, including Entamoeba (E.) spp. and Giardia (G.) lamblia. Within-sample diversity remains largely unaffected, whereas overall community composition is significantly affected by infection with both nonpathogenic E. coli (R2 = 0.0131, P = 0.0001) and Endolimax nana (R2 = 0.00902, P = 0.0001), and by pathogenic E. histolytica (R2 = 0.0164, P = 0.0001) and G. lamblia (R2 = 0.00676, P = 0.0001). Infections with multiple parasite species induces more pronounced shifts in microbiota community than mild ones. A total of 31 bacterial genera across all four major bacterial phyla were differentially abundant in protozoan infection as compared to noninfected individuals, including increased abundance of Prevotella, Campylobacter and two Clostridium clades, and decreased abundance of Collinsella, Lactobacillus, Ruminococcus, Veillonella and one Clostridium clade. In the present study, we demonstrate that the fecal bacterial microbiota is shaped by intestinal parasitic infection, with most pronounced associations for protozoan species. Our results provide insights into the interplay between the microbiota and intestinal parasites, which are valuable to understand infection biology and design further studies aimed at optimizing treatment strategies

    Consistent alterations in faecal microbiomes of patients with primary sclerosing cholangitis independent of associated colitis.

    No full text
    Background Single‐centre studies reported alterations of faecal microbiota in patients with primary sclerosing cholangitis (PSC). As regional factors may affect microbial communities, it is unclear if a microbial signature of PSC exists across different geographical regions. Aim To identify a robust microbial signature of PSC independent of geography and environmental influences. Methods We included 388 individuals (median age, 47 years; range, 15‐78) from Germany and Norway in the study, 137 patients with PSC (n = 75 with colitis), 118 with ulcerative colitis (UC) and 133 healthy controls. Faecal microbiomes were analysed by 16S rRNA gene sequencing (V1‐V2). Differences in relative abundances of single taxa were subjected to a meta‐analysis. Results In both cohorts, microbiota composition (beta‐diversity) differed between PSC patients and controls (P < 0.001). Random forests classification discriminated PSC patients from controls in both geographical cohorts with an average area under the curve of 0.88. Compared to healthy controls, many new cohort‐spanning alterations were identified in PSC, such as an increase of Proteobacteria and the bile‐tolerant genus Parabacteroides, which were detected independent from geographical region. Associated colitis only had minor effects on microbiota composition, suggesting that PSC itself drives the faecal microbiota changes observed. Conclusion Compared to healthy controls, numerous microbiota alterations are reproducible in PSC patients across geographical regions, clearly pointing towards a microbiota composition that is shaped by the disease itself and not by environmental factors. These reproducibly altered microbial populations might provide future insights into the pathophysiology of PSC

    Protective and aggressive bacterial subsets and metabolites modify hepatobiliary inflammation and fibrosis in a murine model of PSC

    No full text
    Objective Conflicting microbiota data exist for primary sclerosing cholangitis (PSC) and experimental models. Goal: define the function of complex resident microbes and their association relevant to PSC patients by studying germ-free (GF) and antibiotic-treated specific pathogen-free (SPF) multidrug-resistant 2 deficient ( mdr2 −/− ) mice and microbial profiles in PSC patient cohorts. Design We measured weights, liver enzymes, RNA expression, histological, immunohistochemical and fibrotic biochemical parameters, faecal 16S rRNA gene profiling and metabolomic endpoints in gnotobiotic and antibiotic-treated SPF mdr2 −/− mice and targeted metagenomic analysis in PSC patients. Results GF mdr2 −/− mice had 100% mortality by 8 weeks with increasing hepatic bile acid (BA) accumulation and cholestasis. Early SPF autologous stool transplantation rescued liver-related mortality. Inhibition of ileal BA transport attenuated antibiotic-accelerated liver disease and decreased total serum and hepatic BAs. Depletion of vancomycin-sensitive microbiota exaggerated hepatobiliary disease. Vancomycin selectively decreased Lachnospiraceae and short-chain fatty acids (SCFAs) but expanded Enterococcus and Enterobacteriaceae. Antibiotics increased Enterococcus faecalis and Escherichia coli liver translocation. Colonisation of GF mdr2 −/− mice with translocated E. faecalis and E. coli strains accelerated hepatobiliary inflammation and mortality. Lachnospiraceae colonisation of antibiotic pretreated mdr2 −/− mice reduced liver fibrosis, inflammation and translocation of pathobionts, and SCFA-producing Lachnospiraceae and purified SCFA decreased fibrosis. Faecal Lachnospiraceae negatively associated, and E. faecalis/ Enterobacteriaceae positively associated, with PSC patients’ clinical severity by Mayo risk scores. Conclusions We identified novel functionally protective and detrimental resident bacterial species in mdr2 −/− mice and PSC patients with associated clinical risk score. These insights may guide personalised targeted therapeutic interventions in PSC patients

    Altered Gut Microbial Metabolism of Essential Nutrients in Primary Sclerosing Cholangitis

    Get PDF
    Background & Aims To influence host and disease phenotype, compositional microbiome changes, which have been demonstrated in patients with primary sclerosing cholangitis (PSC), must be accompanied by functional changes. We therefore aimed to characterize the genetic potential of the gut microbiome in patients with PSC compared with healthy controls (HCs) and patients with inflammatory bowel disease (IBD). Methods Fecal DNA from 2 cohorts (1 Norwegian and 1 German), in total comprising 136 patients with PSC (58% with IBD), 158 HCs, and 93 patients with IBD without PSC, were subjected to metagenomic shotgun sequencing, generating 17 billion paired-end sequences, which were processed using HUMAnN2 and MetaPhlAn2, and analyzed using generalized linear models and random effects meta-analyses. Results Patients with PSC had fewer microbial genes compared with HCs (P < .0001). Compared with HCs, patients with PSC showed enrichment and increased prevalence of Clostridium species and a depletion of, for example, Eubacterium spp and Ruminococcus obeum. Patients with PSC showed marked differences in the abundance of genes related to vitamin B6 synthesis and branched-chain amino acid synthesis (Qfdr < .05). Targeted metabolomics of plasma from an independent set of patients with PSC and controls found reduced concentrations of vitamin B6 and branched-chain amino acids in PSC (P < .0001), which strongly associated with reduced liver transplantation–free survival (log-rank P < .001). No taxonomic or functional differences were detected between patients with PSC with and without IBD. Conclusions The gut microbiome in patients with PSC exhibits large functional differences compared with that in HCs, including microbial metabolism of essential nutrients. Alterations in related circulating metabolites associated with disease course, suggesting that microbial functions may be relevant for the disease process in PSC

    Rare mutations in RINT1 predispose carriers to breast and lynch syndrome-spectrum cancers

    No full text
    Approximately half of the familial aggregation of breast cancer remains unexplained. A multiple-case breast cancer family exome-sequencing study identified three likely pathogenic mutations in RINT1 (NM_021930.4) not present in public sequencing databases: RINT1 c.343C>T (p.Q115X), c.1132_1134del (p.M378del), and c.1207G>T (p.D403Y). On the basis of this finding, a population-based case-control mutation-screening study was conducted that identified 29 carriers of rare (minor allele frequency < 0.5%), likely pathogenic variants: 23 in 1,313 early-onset breast cancer cases and six in 1,123 frequency-matched controls [OR, 3.24; 95% confi- dence interval (CI), 1.29-8.17; P = 0.013]. RINT1 mutation screening of probands from 798 multiplecase breast cancer families identified four additional carriers of rare genetic variants. Analysis of the incidence of first primary cancers in families of women carrying RINT1 mutations estimated that carriers were at increased risk of Lynch syndrome-spectrum cancers [standardized incidence ratio (SIR), 3.35; 95% CI, 1.7-6.0; P = 0.005], particularly for relatives diagnosed with cancer under the age of 60 years (SIR, 10.9; 95% CI, 4.7-21; P = 0.0003).</p

    Rare Mutations in RINT1

    No full text
    Approximately half of the familial aggregation of breast cancer remains unexplained. A multiple-case breast cancer family exome sequencing study identified three likely pathogenic mutations in RINT1 (NM_021930.4) not present in public sequencing databases: RINT1 c.343C>T (p.Q115X), c.1132_1134del (p.M378del) and c.1207G>T (p.D403Y). Based on this finding, a population-based case-control mutation-screening study was conducted and identified 29 carriers of rare (MAF < 0.5%), likely pathogenic variants: 23 in 1,313 early-onset breast cancer cases and 6 in 1,123 frequency-matched controls (OR=3.24, 95%CI 1.29-8.17; p=0.013). RINT1 mutation screening of probands from 798 multiple-case breast cancer families identified 4additional carriers of rare genetic variants. Analysis of the incidence of first primary cancers in families of women in RINT1-mutation carrying families estimated that carriers were at increased risks of Lynch syndrome-spectrum cancers (SIR 3.35, 95% CI 1.7-6.0; P=0.005), particularly for relatives diagnosed with cancer under age 60 years (SIR 10.9, 95%CI 4.7-21; P=0.0003)

    Functional variants in the sucrase-isomaltase gene associate with increased risk of irritable bowel syndrome

    Get PDF
    OBJECTIVE: IBS is a common gut disorder of uncertain pathogenesis. Among other factors, genetics and certain foods are proposed to contribute. Congenital sucrase-isomaltase deficiency (CSID) is a rare genetic form of disaccharide malabsorption characterised by diarrhoea, abdominal pain and bloating, which are features common to IBS. We tested sucrase-isomaltase (SI) gene variants for their potential relevance in IBS. DESIGN: We sequenced SI exons in seven familial cases, and screened four CSID mutations (p.Val557Gly, p.Gly1073Asp, p.Arg1124Ter and p.Phe1745Cys) and a common SI coding polymorphism (p.Val15Phe) in a multicentre cohort of 1887 cases and controls. We studied the effect of the 15Val to 15Phe substitution on SI function in vitro. We analysed p.Val15Phe genotype in relation to IBS status, stool frequency and faecal microbiota composition in 250 individuals from the general population. RESULTS: CSID mutations were more common in patients than asymptomatic controls (p=0.074; OR=1.84) and Exome Aggregation Consortium reference sequenced individuals (p=0.020; OR=1.57). 15Phe was detected in 6/7 sequenced familial cases, and increased IBS risk in case-control and population-based cohorts, with best evidence for diarrhoea phenotypes (combined p=0.00012; OR=1.36). In the population-based sample, 15Phe allele dosage correlated with stool frequency (p=0.026) and Parabacteroides faecal microbiota abundance (p=0.0024). The SI protein with 15Phe exhibited 35% reduced enzymatic activity in vitro compared with 15Val (p&lt;0.05). CONCLUSIONS: SI gene variants coding for disaccharidases with defective or reduced enzymatic activity predispose to IBS. This may help the identification of individuals at risk, and contribute to personalising treatment options in a subset of patients
    corecore