59 research outputs found

    Receptor antagonism/agonism can be uncoupled from pharmacoperone activity

    Get PDF
    Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist

    Discovery of an enzyme and substrate selective inhibitor of ADAM10 using an exosite-binding glycosylated substrate

    Get PDF
    ADAM10 and ADAM17 have been shown to contribute to the acquired drug resistance of HER2-positive breast cancer in response to trastuzumab. The majority of ADAM10 and ADAM17 inhibitor development has been focused on the discovery of compounds that bind the active site zinc, however, in recent years, there has been a shift from active site to secondary substrate binding site (exosite) inhibitor discovery in order to identify non-zinc-binding molecules. In the present work a glycosylated, exosite-binding substrate of ADAM10 and ADAM17 was utilized to screen 370,276 compounds from the MLPCN collection. As a result of this uHTS effort, a selective, time-dependent, non-zinc-binding inhibitor of ADAM10 with Ki = 883 nM was discovered. This compound exhibited low cell toxicity and was able to selectively inhibit shedding of known ADAM10 substrates in several cell-based models. We hypothesize that differential glycosylation of these cognate substrates is the source of selectivity of our novel inhibitor. The data indicate that this novel inhibitor can be used as an in vitro and, potentially, in vivo, probe of ADAM10 activity. Additionally, results of the present and prior studies strongly suggest that glycosylated substrate are applicable as screening agents for discovery of selective ADAM probes and therapeutics

    Identification of Small-Molecule Inhibitors of Neutral Ceramidase (nCDase) via Target-Based High-Throughput Screening

    Get PDF
    There is interest in developing inhibitors of human neutral ceramidase (nCDase) because this enzyme plays a critical role in colon cancer. There are currently no potent or clinically effective inhibitors for nCDase reported to date, so we adapted a fluorescence-based enzyme activity method to a high-throughput screening format. We opted to use an assay whereby nCDase hydrolyzes the substrate RBM 14-16, and the addition of NaIO4 acts as an oxidant that releases umbelliferone, resulting in a fluorescent signal. As designed, test compounds that act as ceramidase inhibitors will prevent the hydrolysis of RBM 14-16, thereby decreasing fluorescence. This assay uses a 1536-well plate format with excitation in the blue spectrum of light energy, which could be a liability, so we incorporated a counterscreen that allows for rapid selection against fluorescence artifacts to minimize false-positive hits. The high-throughput screen of >650,000 small molecules found several lead series of hits. Multiple rounds of chemical optimization ensued with improved potency in terms of IC50 and selectivity over counterscreen assays. This study describes the first large-scale high-throughput optical screening assay for nCDase inhibitors that has resulted in leads that are now being pursued in crystal docking studies and in vitro drug metabolism and pharmacokinetics (DMPK).National Cancer Institute https://doi.org/10.13039/100000054Stony Brook Cancer CenterPeer Reviewe

    Advanced Development of Primary Pancreatic Organoid Tumor Models for High-Throughput Phenotypic Drug Screening.

    Get PDF
    Traditional high-throughput drug screening in oncology routinely relies on two-dimensional (2D) cell models, which inadequately recapitulate the physiologic context of cancer. Three-dimensional (3D) cell models are thought to better mimic the complexity of in vivo tumors. Numerous methods to culture 3D organoids have been described, but most are nonhomogeneous and expensive, and hence impractical for high-throughput screening (HTS) purposes. Here we describe an HTS-compatible method that enables the consistent production of organoids in standard flat-bottom 384- and 1536-well plates by combining the use of a cell-repellent surface with a bioprinting technology incorporating magnetic force. We validated this homogeneous process by evaluating the effects of well-characterized anticancer agents against four patient-derived pancreatic cancer KRAS mutant-associated primary cells, including cancer-associated fibroblasts. This technology was tested for its compatibility with HTS automation by completing a cytotoxicity pilot screen of ~3300 approved drugs. To highlight the benefits of the 3D format, we performed this pilot screen in parallel in both the 2D and 3D assays. These data indicate that this technique can be readily applied to support large-scale drug screening relying on clinically relevant, ex vivo 3D tumor models directly harvested from patients, an important milestone toward personalized medicine

    Lead Identification using 3D Models of Pancreatic Cancer: Development of 3D Tumor Models for High-throughput Screening.

    Get PDF
    Recent technological advances have enabled 3D tissue culture models for fast and affordable HTS. We are no longer bound to 2D models for anti-cancer agent discovery, and it is clear that 3D tumor models provide more predictive data for translation of preclinical studies. In a previous study, we validated a microplate 3D spheroid-based technology for its compatibility with HTS automation. Small-scale screens using approved drugs have demonstrated that drug responses tend to differ between 2D and 3D cancer cell proliferation models. Here, we applied this 3D technology to the first ever large-scale screening effort completing HTS on over 150K molecules against primary pancreatic cancer cells. It is the first demonstration that a screening campaign of this magnitude using clinically relevant, ex-vivo 3D pancreatic tumor models established directly from biopsy, can be readily achieved in a fashion like traditional drug screen using 2D cell models. We identified four unique series of compounds with sub micromolar and even low nanomolar potency against a panel of patient derived pancreatic organoids. We also applied the 3D technology to test lead efficacy in autologous cancer associated fibroblasts and found a favorable profile for better efficacy in the cancer over wild type primary cells, an important milestone towards better leads. Importantly, the initial leads have been further validated in across multiple institutes with concordant outcomes. The work presented here represents the genesis of new small molecule leads found using 3D models of primary pancreas tumor cells

    High throughput assay for compounds that boost BDNF expression in neurons

    No full text
    Deficiencies in brain-derived neurotrophic factor (BDNF) have been linked to several brain disorders, making compounds that can boost neuronal BDNF synthesis attractive as potential therapeutics. However, a sensitive and quantitative BDNF assay for high-throughput screening (HTS) is still missing. Here we report the generation of a new mouse Bdnf allele, BdnfNLuc, in which the sequence encoding nano luciferase (NLuc) is inserted into the Bdnf locus immediately before the stop codon so that the allele will produce a BDNF-NLuc fusion protein. BDNF-NLuc protein appears to function like BDNF as BdnfNLuc/NLuc homozygous mice grew and behaved almost normally. We were able to establish and optimize cultures of cortical and hippocampal BdnfNLuc/+ neurons isolated from mouse embryos in 384-well plates. We used the cultures as a phenotypic assay to detect the ability of 10 mM KCl to stimulate BDNF synthesis and achieved a reproducible Z′ factor > 0.50 for the assay, a measure considered suitable for HTS. We successfully scaled up the assay to screen the 1280-compound LOPAC library (Library of Pharmacologically Active Compounds). The screen identified several BDNF-boosting compounds, one of which is Bay K8644, a L-type voltage-gated calcium channel (L-VGCC) agonist, which was previously shown to stimulate BDNF synthesis. These results indicate that our phenotypic neuronal assay is ready for HTS to identify novel BDNF-boosting compounds

    FLOW INJECTION MONITORING OF ENZYME REACTIONS ON SOLID SURFACES

    No full text
    Optosensing flow injection analysis may be used to monitor enzyme reactionson various types of solid surfaces, e.g., cellulose, Teflon or polypropylene. The surfaces may bein the form ofa pad, a membraneorparticles (in a column). While the enzyme maybe in solution, advantages accrueif it is attached to the solid surface. Traditional enzyme immobilization on surfaces involves chemical bonding reactions, but enzymes may be directly adsorbed onto certain hydrophobic surfaces. The principles of optosensing measurements are presented andapplicationsto cellulose pads and gas barrier membranes for enzyme measurements are reviewed. Recent novel methodsfor derivatizing enzymes for direct adsorption onto fluorocarbon membranesare presented. A new gas sensing (gas gap) membrane is described in which the membraneacts as the actual sensor and notjust a barrier, suitable for optosensing of monitoring enzyme reactions. Preliminary studies of the direct adsorption of urease enzyme onto the membrane are presented. Silica based C-18 particles in a microcolumn are used to adsorb an indicator and native urease enzymé. Optosensing measurementsof urea by measuring transmittance through the particles are presented

    Chemical validation and optimization of pharmacoperones targeting vasopressin type 2 receptor mutant

    No full text
    A series of compounds formerly identified by high-throughput screening was studied for their ability to serve as pharmacoperones for the vasopressin type 2 receptor (V2R) mutant L83Q, which is known to cause nephrogenic diabetes insipidus (NDI). Three compounds were particularly effective in rerouting the mutant receptor in a concentration-dependent manner, were neither agonists nor antagonists, and displayed low cellular toxicity. Compound 1 was most effective and can be used as a molecular probe for future studies of how small molecules may affect NDI caused by mutant V2R. These compounds, however, failed to rescue the V2R Y128S mutant, indicating that the compounds described may not work in the rescue of all known mutants of V2R. Taken collectively, the present studies have now identified a promising lead compound that could function as a pharmacoperone to correct the trafficking defect of the NDI-associated mutant V2R L83Q and thus has the therapeutic potential for the treatment of NDI
    • …
    corecore