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Abstract

Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable 

them to traffic to the correct biological locus where they function. Previously, a library of nearly 

645,000 structures was interrogated with a high throughput screen; pharmacoperones were 

identified for V2R mutants with a view toward correcting the underlying mutational defects in 

nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate 

hits from the earlier study. We found no consistent relation between antagonism or agonism and 

pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic 

activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone 

drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs 

have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to 

stimulation of the receptor with agonist.
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Introduction

Protein trafficking from the endoplasmic reticulum (ER) to the plasma membrane (PM) or 

other intracellular loci is a relatively new therapeutic target and is effective since misfolded 

*Corresponding author, michael.conn@ttuhsc.edu,.
†jointly communicated with TPS.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Mol Cell Endocrinol. Author manuscript; available in PMC 2017 October 15.

Published in final edited form as:
Mol Cell Endocrinol. 2016 October 15; 434: 176–185. doi:10.1016/j.mce.2016.07.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/304665157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and misrouted proteins can be rescued and returned to function by protein-specific 

pharmacoperone drugs (1–3). These drugs diffuse into cells, serve as structural templates 

and guide the folding (or refolding (4)) of otherwise misfolded and misrouted mutants of 

receptors and enzymes (2). Rescued mutants pass the scrutiny of the cellular quality control 

system and are routed to their correct intracellular locus where they function appropriately. 

This approach is effective since the cellular quality control system is non-specific, 

recognizing motifs such as exposed hydrophobic surfaces, unpaired Cys bonds and other 

general indicators of misfolding. The assessment by the quality control system addresses 

structural not functional failures, so misfolded proteins are sequestered even if they retain 

function. Accordingly, mutant enzymes, receptors and ion channels can be rescued and 

restored to function (1, 2).

The WT V2R is a GPCR that is coupled to both cAMP and IP production and normally 

resides in the plasma membrane of the distal convoluted tubule and collecting ducts of the 

kidney. In response to arginine vasopressin, diuresis is regulated. When this function is lost, 

nephrogenic diabetes insipidus results (5, 6).

There are a large number of disease-causing mutants of the V2R (4) that do not properly 

traffic to the plasma membrane, frequently being retained in the endoplasmic reticulum; here 

they cannot perform their biological function of transducing a signal from vasopressin to the 

G-protein. Pharmacoperone drugs can rescue the V2R mutants and restore function. For the 

V2R and other GPCRs (7, 8), drugs that rescue one mutant frequently rescue most mutants 

of an individual protein and this suggests that drugs may be identified that are generally 

effective yet retain target specificity.

One problem in reducing the approach to identify novel pharmacoperones to practice is that 

peptidomimetic antagonists were initially selected by many laboratories, including our own, 

for demonstration of pharmacoperone activity because these were small, hydrophobic 

molecules that bound to the V2R with high specificity and did not evoke agonism. While 

effective as pharmacoperones, drugs with both antagonist and pharmacoperone activity 

present a complex pharmacology in vivo since they need to be removed after rescue is 

effected so that the agonist can occupy the active site. Accordingly, determination of 

whether pharmacoperone activity and antagonism can be uncoupled is an important 

consideration for the development of therapeutic activity. Accordingly, we evaluated hits 

from a previous large HTS campaign with a view toward answering this question.

MATERIALS AND METHODS

General

SR121463B, a V2R peptidomimetic antagonist used in the current study as a known 

pharmacoperone drug, was generously provided by Dr. Claudine Serradeil at Sanofi-Aventis 

and used as received. Test compounds used in this study were prepared at the screening 

facility and stored as 10 mM DMSO stock solutions at −20 °C in sealed polypropylene 

plates and these stocks were also used for the orthologous assay. 3-Isobutyl-1-

methylxanthine (IBMX, Sigma Aldrich, St. Louis, MO), vasopressin (Tocris Biosciences, 

Bristol, England UK) and fetal bovine serum (FBS, Hyclone, Logan, UT) were obtained as 
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indicated. The V2 receptor antagonist, d(CH2)5[D-Ile(2),Ile(4),Tyr-NH2(9)]AVP was a kind 

gift of Maurice Manning (9, 10) and was radiolabeled using Pierce Pre-Coated Iodination 

Tubes (Thermo Fisher Scientific, Waltham, MA) and 125-Iodine (NEZ033L; PerkinElmer, 

Waltham, MA), DMEM, PBS (GIBCO, Invitrogen). pTRE2-Hygromycin vector (Invitrogen, 

San Diego, CA), myo-[2-3H(N)]-inositol (NET-114A; PerkinElmer, Waltham, MA) were 

obtained as indicated.

Creation of Stable (tTA + Mutant V2 Receptors) HeLa Cells

The stable HeLa (tTA; tetracycline-controlled transactivator) cell line was a kind gift from 

Peter Seeburg (11). The cells were maintained in growth medium (DMEM/10% FBS/20 

µg/ml gentamicin) and grown at 37°C, 5% CO2 in a humidified atmosphere until the density 

reached about 90%.

The human WT V2R and the mutant L83Q were cloned into pTRE2-Hygromycin vector 

(the response vector) and then transfected into the stable HeLa (tTA; tTA binds the TRE and 

activates transcription in the absence of doxycycline) cell line. Selection antibiotics were 

used at 400 μg/ml G418 + 200 μg/ml hygromycin. Single colonies were selected and 

screened for expression of the WT V2R and mutant L83Q receptors in separate, stably 

transfected cells. Immunofluorescence has been used to show that mutant L83Q is rescued 

and restored to the plasma membrane by SR121463B (7). In addition, rescue results in 

access of the receptor mutant to the ligand and resultant biological function (present study).

uHTS Optimized Primary V2R Pharmacoperone Assay (“the HTS assay”)

An HTS campaign was completed (12) and identified potential pharmacoperones from a 

chemical library of approximately 645,000 structures. The assay relies on HeLa cells stably 

expressing mutant L83Q of the hV2R under the control of a tetracycline-controlled 

transactivator. A robotic system enables identification of structures that rescue the mutant, 

enabling it to traffic to the plasma membrane where it can bind the native agonist and couple 

to G-proteins. Such structures are then re-assayed in the presence of doxycycline, which 

shuts off the gene expressing the mutant and serves as a negative control, identifying false 

positive structures. SR121463B is a known pharmacoperone and antagonist of the V2R and 

is used as an internal control. 147 active structures were identified.

Pharmacoperone Evaluation (“the orthologous assay”)

For the present studies a different orthologous assay was used to confirm the hits in the 

uHTS assay (12) and to compare pharmacoperone activity to agonism, antagonism and 

radioligand binding. This orthologous assay depends on radioimmunoassay of cyclic AMP 

produced. This orthologous assay was methodologically different than the uHTS screening 

procedure since that other assay had been optimized for screening procedures. The HTS, for 

example, does not include washing of cells to accommodate the needs of the screen. Ninety-

six active compounds, representative of the 147 hits, were obtained and used for further 

evaluation. The chemical structures are shown in supplementary data.

Briefly, for the orthologous assay used in the present work, ten thousand cells of the stable 

HeLa line (containing tTA + L83Q) were plated per well in 96-well plates. The cells were 
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cultured in the presence or absence of 1 μg/ml doxycycline during all phases of the 

experiment. Fifty-four hours after plating, the cells were washed twice with DBG (DBG: 

DMEM/ 0.1% BSA/ 20 μg/ml gentamicin) then the 96 structures, prepared in DBG plus 1% 

DMSO were added to the wells in triplicate and allowed to incubate for 16 h at 37 C. After 

16 h, the cells were washed 3 times with DBG + 1% DMSO to wash out the structures. As 

part of the washing, the cells were incubated for 10 min at 37 C twice, then once for 20 min 

at 37 C. The cells were then stimulated with 1 μM vasopressin in DBG containing 0.2 mM 

IBMX for 30 min at 37 C. After stimulation, the medium from each well was collected in 

96-well plates containing 10 mM theophylline (final 1 mM). The samples were heated at 99 

C for 5 min and cAMP was determined by RIA (13).

Antagonist Evaluation

Antagonism was evaluated in the WT cell line. Ten thousand cells of the stable HeLa line 

(containing tTA + hV2R WT) were plated per well in 96-well plates. Seventy hours after 

plating, the cells were washed twice with DBG. The cells were stimulated with 5 nM 

vasopressin (approximately ED50) containing the 96 structures (10 μM in DMSO), DMSO 

or the known antagonist control structure SR121463B, prepared in DBG + 0.2 mM IBMX 

for 30 minutes at 37 C. Cyclic AMP release was measured by RIA (13). The antagonism by 

10 μM SR121643B or to carrier (DMSO) alone (each in the presence of 5 nM vasopressin) 

is described in the Results. The Ki for SR121643B for WT V2R is 3.4 ± 1.9 nM (14).

Agonist Evaluation

Agonism was evaluated in the same cell line. Ten thousand cells of the stable HeLa line 

(containing tTA + WT hV2R) were plated per well in 96-well plates. Seventy hours after 

plating, the cells were washed twice with DBG. The cells were stimulated with 1 μM 

vasopressin (positive control), DMSO or each of the 96 structures (10 μM in DMSO), and 

the control structure SR121463B, prepared in DBG + 0.2 mM IBMX for 30 minutes at 37 C. 

Cyclic AMP release was measured by RIA (13). The response to 10 μM SR121643B or to 

carrier (DMSO) alone is described in the Results

Inositol phosphate (IP) assays

The L83Q mutant and hV2R WT stable cell lines were plated at 20,000 cells per well. Fifty 

four hours after plating, DMSO or SR121463B was added to the cells in quadruplicate and 

allowed to incubate for 18 h and “preloaded” with 4 μCi/ml myo-[2-3H(N)]-inositol in 

inositol-free DMEM. After the “preload”, the cells were washed for 10 min at 37 C twice 

then once for 20 min at 37 C with DMEM (inositol free) containing 5 mM LiCl plus 1% 

DMSO and treated for 2 h with media alone or 1μM vasopressin in the same medium. Total 

IP was then determined as previously described (15).

Binding assay

Human V2R WT cells were cultured and plated in growth medium as described above, 

except 30,000 cells in growth medium were added to 24-well Costar cell culture plates. 

Seventy hours after plating, the cells were washed twice with DMEM/ 0.1% BSA/ 10 mM 

HEPES, then 8 × 106 cpm/ml of [125I-Tyr]-AVP [d(CH2)5[D-Ile2, Val4, Tyr-NH29], was 
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added in the same medium in the presence of 100 μM of each structure and allowed to 

incubate at room temperature for 90 min, consonant with maximum binding (9, 10). New 

receptor synthesis during this period is negligible during this period and at room temperature 

(9, 10, 16). After 90 min, the media was removed and radioactivity was measured as 

previously described. To determine nonspecific binding, the same concentration of 

radioligand was added to cells in the presence of 5 μM unlabeled vasopressin. This is greater 

than 1,000 fold in excess of the mass of the tracer and sufficient to decreased binding of 

tracer with vasopressin to background radioactivity. Buserelin (5 μM), an irrelevant peptide, 

SR121463B (100 μM) and vasopressin (5 μM) were used as controls.

Results

In the present study, we evaluated pharmacoperone activity, agonism and antagonism of hits 

that were generated from a previous large scale high throughput campaign for 

pharmacoperone drugs (12) that rescue mutants of the V2 receptor and restore them to 

function. In the present work, the determination of pharmacoperone activity relied on an 

orthologous assay that did not have the constraints required for HTS (e.g. washing out 

drugs) and determined cAMP by an RIA. Binding of radioligand of the rescued receptors 

was also evaluated. First, we assessed the coupling to Gs (cyclic AMP production) of the 

WT V2R and the L83Q mutant that had been rescued (or not) by SR121463B. The data 

indicate (figure 1) that, while WT receptor couples to both Gs and Gq/11, the rescued 

mutant couples only to Gs. This observation was initially surprising but suggests that, once 

rescued, this GPCR mutant reestablishes its original conformation which couple to Gs but 

does not couple to Gq/11. We believe this G-protein bias is a function of the mutation itself. 

Because the mutant is misrouted, the bias is not until rescue occurs, of course. Before 

rescue, the mutant is not accessible to the agonist and so rescue is needed to observe this 

effect of the mutation. There are several observations that support the view that the bias 

observed with the rescued mutants is due to the mutation itself and not the effect of the 

rescue with a pharmacoperone drug: First, treatment of cells expressing the WT, when 

treated with the SR pharmacoperone, does not change the G-protein to which WT is 

coupled. Thus, the pharmacoperone drug itself does not evoke bias. Second, the position of 

the mutation (see red colored amino acid in figure 2) could influence the positioning of an 

intracellular loop that has been associated with alterations in G-protein coupling (17–19). 

Third, in the case of another rescued mutation GnRHR[E90K], the rescue of the receptor 

reveals constitutive activity that could not be seen in the absence of rescue (20). This 

observation also presents the possibility of an additional use of particular pharmacoperone 

drugs, such a SR121463B. Specifically, it may be possible to rescue particular V2R mutants 

so that only coupling to a single G-protein occurs, in essence, producing a fully biased 

receptor mutant for experimental purposes. While this may be problematic in restoring 

function in vivo (particular functions may require coupling to both Gs and Gq/11), this is not 

likely to be expected with all mutants since most mutations do not create receptor bias for 

GPCRs. Because of this observation, we used measurements of cAMP as a measure of 

mutant receptor activation.

At the completion of screening a library of 644,951 structures including concentration 

response analysis, 147 were identified as both active (in the absence of doxycycline) and 
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selective (based on loss of activity in the presence of doxycycline) in the uHTS (12). Of 

these, 96 were also active and selective in the orthologous assay for pharmacoperone activity 

(see Table 1 and supplemental data), using evaluation at a fixed concentration of 10 μM 

(figure 3), a concentration selected from the concentration-response curves. The structures 

of these 96 follow-up compounds are shown in the supplemental data. When doxycycline 

was included in the negative screen, the activity values associated with the 96 compound 

structures all scored at or around a line of no activity.

From those 96, 14 structures and SR121463B were selected for a full concentration-response 

curve to measure pharmacoperone activity; this curve ranged from 0.1 – 100 μM. These 

structures were selected to be representative of all the chemical classes in the 96 structures. 

A bimodal pattern was common (figure 4), frequently producing optimal activity at 10 μM. 

This optimal dose was used in subsequent studies. In the case of structure number 50, 1 μM 

provided the best activity. The bimodal pattern appears to reflect toxicity of drugs at high 

doses that can be observed visually as crenation.

The 96 follow-up compounds (structures in the supplemental data) were evaluated at a 

concentration of 10 μM for agonist activity using WT V2R stably expressed in HeLa cells. 

This assay can distinguish 0.1 nM vasopressin from background and has an EC50 of 5 nM 

vasopressin using cAMP as an endpoint. None of the structures evaluated showed 

measurable agonist activity in this assay (figure 5).

Binding was assessed for these structures using a metabolically stable, iodinatable V2R 

antagonist (figure 6). A surprising finding was that some of the structures produced levels of 

binding that exceeded binding in the presence of dimethylsulfoxide only (no competition). 

This observation suggested that these structures may serve as inverse agonists of the V2R 

and a pre-existing receptor dimer or oligomer, which is consistent with earlier findings (21–

23). Alternatively, the data may suggest an allosteric effect of these molecules. 

Distinguishing between these possibilities is outside the scope of this study, which focuses 

on identifying non-antagonist pharmacoperones.

Antagonism to WT was assessed in the presence of 5 nM vasopressin (figure 7). The 

structures showed a range of antagonism. Correlation of antagonism (from figure 7) and 

pharmacoperone activity (from figure 3) is shown (figure 8 and Table 1). There were strong 

and weak antagonists which showed comparable levels of pharmacoperone activity, 

suggesting that pharmacoperone and antagonist activity are not coupled (statistics in figure 

legends).

Discussion

Mutation of the V2 receptor is the underlying cause of some forms of nephrogenic diabetes 

insipidus since these mutants do not traffic to the plasma membrane and result in a cell that 

is refractory to endogenous vasopressin. In the prior screen, a library of 644,951 chemical 

structures were interrogated by measuring rescue (G-protein coupling) of a L83Q regulated 

by a TET-off transactivator in HeLa cells stably expressing this mutant. Absent rescue, the 

mutant is retained in the endoplasmic reticulum where it is unable to bind ligand or couple 
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to its cognate G-protein (7). When rescued, immunofluorescence shows that the mutant 

migrates to the plasma membrane (7) and can couple to Gs (11). When the assay is 

conducted in the presence of doxycycline, the gene for the mutant is not expressed and 

pharmacoperones that act by refolding the mutant are without effect. This provides a means 

of measuring false positives in the HTS and orthologous assays.

In the prior HTS, structures were evaluated for their ability to rescue this mutant 

(pharmacoperone activity) by means of the cAMP-Glo Max, which measures cAMP 

accumulation of this Gs coupled receptor mutant in response to vasopressin.

Structures which rescue the mutant were re-evaluated in the presence of doxycycline, a 

treatment which extinguishes the mutant gene by way of the TET-off transactivator and, 

accordingly identifies false positives. 147 active structures which enabled the mutant to 

couple to Gs and generate cAMP in the absence but not presence of doxycycline were 

identified (12).

In the present work, selected “hits” were assessed in an orthologous assay which measured 

cAMP accumulation by RIA. This assay, described in Methods, differs in several important 

ways from the HTS assay, notably by including washes of cell treatments that cannot be 

accommodated in the HTS protocol.

Ninety-six structures that were positive in both the cAMP-Glo Max (HTS) and RIA-based 

(orthologous) assays and represented all chemical classes of hits from the HTS assay, were 

subjected to evaluation for agonism, antagonism and pharmacoperone activity. Rescued V2 

receptor mutants were evaluated for radioligand binding. None of these structures showed 

agonism in a cell-based assay and antagonistic activity did not correlate with 

pharmacoperone activity. This latter observation is important since most prior 

demonstrations of pharmacoperone rescue were performed with drugs that were known to be 

peptidomimetic antagonists. These were selected because they were known to interact with 

mutants with high specificity, not evoke an agonistic response and were readily available. 

The question of the existence of non-antagonist pharmacoperone drugs has not been 

addressed and the early selection of antagonists for pharmacoperone active drugs has caused 

some to believe that the two activities are inextricably linked. The present study suggests 

otherwise.

The observation that pharmacoperone drugs that are not also antagonists (or agonists) of the 

V2R can be identified is important in the effort to exploit this class of drugs, since drugs 

with both activities present a complex pharmacology. In the case of drugs with 

pharmacoperone and antagonist activities, the mutant must first be rescued then washed out 

so that endogenous agonist can bind. The drug must be given in a discrete pulse, rather than 

simply elevated over time, making oral administration difficult or impossible. If a 

pharmacoperone can be identified without antagonistic activity, the drug need not be washed 

out and this opens the door to oral administration. Additionally, it appears that 

pharmacoperones that rescue one mutant of a particular protein, rescue many (7, 8), 

suggesting that these agents stabilize one or more regions that are needed in a particular 

conformation to pass the scrutiny of the cellular quality control system. The presence of 
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more than a single binding site that impacts on a GPCR is not novel (24), but we believe that 

the present study is the first to identify small molecules that impact receptor trafficking 

without competing for binding at the native ligand binding site.

Radioligand assays of the rescued receptors suggested that some of these hits appeared to be 

inverse agonists of a precoupled receptor oligomer or allosteric modulation (25).

This study suggests that allosteric ligand binding sites (i.e. sites that do not produce 

antagonism or agonism) exist on GPCRs that produce conformational changes. We (26) and 

other laboratories (27–30) have similar findings. In fact, there are data to show that the entire 

surface of the GPCR can be considered a potential binding site for ligands, since 

conformational changes occur (31–34). In addition, allosteric modulators for family A 

peptide receptors are very often drug-like non–peptides (31–34) consonant with the 

observed function of pharmacoperones as well. It has been shown and is predicted by 

molecular dynamics that binding is not a passive process and binding to a receptor will 

almost certainly change the ensemble thermodynamics (i.e. conformations) with the 

exception of the unlikely possibility that the ligand has identical affinities for all the 

members of the ensemble (35). This view is also supported by the data in this study. Luttrel 

and colleagues report, using beta-arrestin signaling, conformational differences that code for 

trafficking of the receptor once internalized. There is bias even as to whether the arrestin-

bound receptor will internalize, whether it will signal, and if internalized, where it will go 

(i.e. become misrouted, destroyed or recycled) (36).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• The present study is the first to systematically identify small molecules 

that impact receptor trafficking without competing for binding at the 

native ligand binding site.

• Antagonist and agonist activities can be uncoupled from 

pharmacoperone activity, enhancing the therapeutic possibilities of 

these drugs.

• The data may suggest that some pharmacoperones can rescue proteins 

acting by allosteric interactions.

• Pharmacoperone drugs can be identified that are not agonists or 

antagonists.
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Figure 1. WT V2R is coupled to Gs and Gq/11 but (pharmacoperone-rescued) mutant L83Q is 
only coupled to Gs
Stably transfected HeLa cells containing WT V2R or the mutant L83Q were used to 

compare Gq/11 (IP) or Gs (cAMP) coupling when the SR121643B pharmacoperone 

structure was used at 1 μM. When cells were stimulated, 1 μM vasopressin was used. At 

least 3 independent experiments were performed in replicates of 3. SEMs show the variance 

between experiments.
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Figure 2. 
Structure of the vasopressin 2 receptor (and vasopressin), showing the site of the mutation, 

L83Q, in red.
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Figure 3. Pharmacoperone activity in 96 structures that are active in the uHTS and orthologous 
assay
Stably transfected HeLa cells containing the mutant L83Q were used to show 

pharmacoperone activity at 10 μM with and without 1μg/ml doxycycline and measuring 

cAMP release. L83Q is in a tetracycline dependent vector. When tetracycline or doxycycline 

are added to the cells, the L83Q gene is turned off. The data from three experiments were 

normalized by subtracting the basal cAMP response (DMSO, 0%, horizontal line) from the 

cAMP response from each drug and dividing this value by subtracting the basal cAMP 

response from that obtained from SR121463B cAMP treatment (100%, horizontal line). The 

result was expressed as a percentage, e.g., {[(cAMP response for each drug) − (basal 

cAMP)] / [(cAMP response with SR121463B) − (basal cAMP)]} × 100%. At least 3 

independent experiments were performed in replicates of 3. The filled circles received no 

doxycycline, the open circles received 1 μg/ml doxycycline. DMSO only (carrier, the 

hourglass symbol) and SR121463B (upward pointing triangle) were present as indicated. In 

some cases the error bars are smaller than the symbols. A high number indicates high 

pharmacoperone activity.
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Figure 4. Full concentration response curves for 14 selected pharmacoperone drugs representing 
the range of structures evaluation and SR121463B, a known pharmacoperone-antagonist
Stably transfected HeLa cells containing the V2 mutant hL83Q were used to show 

pharmacoperone concentration response curves. Cyclic AMP release was measured. The 

data were normalized using the same method as described above for figure 3. At least 3 

independent experiments were performed in replicates of 3. SEMs show the variance 

between experiments. A high number indicates high pharmacoperone activity.
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Figure 5. Agonist activity was evaluated for each of the 96 structures
Stably transfected HeLa cells containing hWT V2R were used to check the agonist activity 

of the chemical structures at 10 μM. Cyclic AMP release was measured. The data were 

normalized by subtracting the basal cAMP response obtained in the presence of antagonist 

(SR121463B, 0% response, horizontal line) from the cAMP response obtained from the 

presence of each structure and dividing that value by the cAMP response obtained in the 

presence of vasopressin- only (100% response, horizontal line) after subtracting basal 

cAMP. See equation in figure 3. The result was expressed as percentage. At least 3 

independent experiments were performed in replicates of 3. Vasopressin only (1 μM, a 

positive control for agonism, the hourglass symbol) and SR121463B (upward pointing 

triangle) were present as indicated. In some cases the error bars are smaller than the 

symbols.

Janovick et al. Page 16

Mol Cell Endocrinol. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Binding displacement for each of the 96 structures
Stably transfected HeLa cells containing hWT V2R were used to check binding /

displacement of each structure (100 μM) incubated with an iodinated V2R antagonist. The 

data were normalized from three experiments by subtracting the non-specific binding (5 μM 

non-iodinated vasopressin, 0% binding, horizontal line) from the binding in the presence of 

each drug binding and then dividing by the binding result of radioligand in DMSO (100% 

binding, horizontal line). Data are expressed as percentages. At least 3 independent 

experiments were performed in replicates of 3. 1% DMSO only (carrier control, the 

hourglass symbol), Buserelin (5 μM, an irrelevant peptide agonist of the gonadotropin 

releasing hormone receptor, downward triangle), vasopressin (5 μM, filled square) and 

SR121463B (100 μM, upward pointing triangle) were present as indicated. In some cases the 

error bars are smaller than the symbols. A high number indicates a high amount of 

radioligand binding.
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Figure 7. Stably transfected HeLa cells containing hWT V2R were used to evaluate the 
antagonist activity of each structure (10 μM) in the presence of 5nM vasopressin
The data were normalized from four experiments by subtracting the basal cAMP response 

(in the presence of antagonist SR121463B alone, 0%, horizontal line) from the cAMP 

response to each drug in the presence of 5 nM vasopressin and dividing that number by the 

response in the presence of vasopressin alone less basal. The horizontal line (100%) shows 

cAMP (less basal) to vasopressin alone, without competing peptide. The data are expressed 

as percentages. At least 4 independent experiments were performed in replicates of 3. 

DMSO only (carrier, the hourglass symbol) and SR121463B (upward pointing triangle) 

were present as indicated. A high number means low antagonism activity.
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Figure 8. Comparison of relative pharmacoperone activity versus relative antagonist activity
The normalized pharmacoperone activity was plotted against the normalized antagonist 

activity to determine the relation between pharmacoperone and antagonist activity in the 96 

structures. In this graph, the normalized value for antagonism was subtracted from 100% so 

that high numbers are both high pharmacoperone and high antagonism. Measured 

antagonism is not predictive of pharmacoperone activity. We calculated the Pearson product-

moment correlation coefficient (r = −0.013), which informed us of a 0.016% common 

variance between antagonist and pharmacoperone activities. Accordingly, the correlation can 

be considered negligible, almost null, meaning that the antagonist activity of these drugs 

cannot systematically predict their pharmacoperone activity, since each one has a different 

behavior.
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Table 1

# name(s) gen structure(s) compound numbers (bold = pharmacoperone, italics = antagonist

1
aminobenzothia-zole 

amides, aminothiazole 
amides

2,3,5,6,7,8,10,12,13,14,15,16,17,18,19,20,24,25,26, 
27,29,30,31,32,33,35,36,37,38,39,40,41,42,43,45,46, 
47,48,49,50,51,52,53,54,55,56,57,58,59,61,62,63,64, 

65,66,67,69,70,71,72,73,74,76,77,78,79,81,83,84,85, 86,87,88, 89,90,91,95,96 
(color blue in the figure)

2
amide sulfonamides 
(meta and para) and 

bissulfonamides

1,9,11,21,68,75,80,93 (note: compounds 1, 11, and 75 also have the structural 
features of class 1 compounds) (color red in the figure)

3 dihydropyridines 23,34,60,94 (color orange in the figure)

4 triazines 82,92 (color brown in the figure)

5

azabenzothiazole 4 (color black in the figure)

acyl urea 44 (color black in the figure)
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# name(s) gen structure(s) compound numbers (bold = pharmacoperone, italics = antagonist

cyanoacrylamide 28 (color black in the figure)

pyrazole amide 22 (color black in the figure)

Of the 96 hits analyzed, over 80% (78 compounds) are in the two closely related structural series termed the “aminothiazole amides” and the 
“aminobenzothiazole amides”. This class of molecules show a wide diversity of activity. Several are moderately strong antagonists (>50% relative 
antagonist activity) without strong pharmacoperone activity: compounds 9, 18, 22, 34, 45, 50, 51, 54, 60, 74, 79, 80, and 92. Others are strong 
pharmacoperones (>100% relative activity) with weak antagonist activity: compounds 8, 19, 24, 33, 40, 41, 52, and 93. Two compounds were both 
strong pharmacoperones (>100% relative activity) and moderately strong antagonists (>50% relative antagonist activity): compounds 71 and 91. 
The remaining large majority of the compounds in these series tended to be weak-to-moderate pharmacoperones and weak-to-moderate antagonists.

The second most-represented class of compounds have phenyl rings substituted with meta or para amide and/or sulfonamide groups. These include 
two of the stronger antagonists: compounds 9 and 80; as well as a strong pharmacoperone: compound 93. The third class is the dihydropyridines, 
which includes two of the stronger antagonists: compounds 34 and 60.

The fourth class is the triazines, which includes one of the stronger antagonists: compound 92.

The remainder of the hits are “singleton” structures with only one hit in each structure type, thus lumped together as class 5. These include an 
azabenzothiazole, an acyl urea, a cyanoacrylamide, and a pyrazole amide, the latter of which is one of the stronger antagonists: compound 22.
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