21 research outputs found

    Modern dehydrogenative amination reactions

    Get PDF
    Nitrogen element is preponderant in Nature. Found in its simplest form as diatomic gas in the air, as well as in elaborated molecules such as the double helix of DNA, this element is indisputably essential for life. Indeed, nitrogen is omnipresent in all metabolic pathways. With the advent of green chemistry, researchers attempt to functionalize arenes without pre-functionalization of the later for the establishment of C-C bond formation. Why not C-N bond formation? We investigated new oxidative amination reactions by cross-dehydrogenative-coupling. Concerned by atom economy and green processes, our objectives were: 1) to obviate pre-activation or pre-oxidation of both C-H coupling partner and N-aminating agent. 2) to avoid the use of chelating directing group. We achieved C-N bond formation for some classes of amines. Thus, we will describe the reactivity of cyclic secondary amines: carbazole, in presence of catalytic amount of ruthenium (II) and copper (II) to build the challenging C-N bond between two carbazoles. The initial mechanistic experiments will be present and discuss. Then, we will describe more challenging hetero-coupling formation between diarylamines and carbazoles. The new ruthenium (II)/ copper (II) catalytic system allowed forming the ortho-N-carbazolation of diarylamines. This reaction performed under mild conditions (O2 as terminal oxidant) displays an unusual intramolecular N-H‱‱N interaction in the novel class of compounds. Finally, we will present a surprising metal free C-N bond formation between the ubiquitous phenols and the phenothiazines. Initially conducted in the presence of transition metals (RuII/CuII), this reaction proved to be efficient with the only effect of cumene and O2. Those components suggest a mechanism initiated by a Hock process. An initial infra-red analysis might point out a strong intramolecular O-H‱‱N interaction in the resulting products. These first elements of reactivity, developed within the laboratory for “modern dehydrogenative amination reactions”, will be presented and discussed

    ChemInform Abstract: O 2

    No full text

    Modern dehydrogenative amination reactions

    No full text
    Nitrogen element is preponderant in Nature. Found in its simplest form as diatomic gas in the air, as well as in elaborated molecules such as the double helix of DNA, this element is indisputably essential for life. Indeed, nitrogen is omnipresent in all metabolic pathways. With the advent of green chemistry, researchers attempt to functionalize arenes without pre-functionalization of the later for the establishment of C-C bond formation. Why not C-N bond formation? We investigated new oxidative amination reactions by cross-dehydrogenative-coupling. Concerned by atom economy and green processes, our objectives were: 1) to obviate pre-activation or pre-oxidation of both C-H coupling partner and N-aminating agent. 2) to avoid the use of chelating directing group. We achieved C-N bond formation for some classes of amines. Thus, we will describe the reactivity of cyclic secondary amines: carbazole, in presence of catalytic amount of ruthenium (II) and copper (II) to build the challenging C-N bond between two carbazoles. The initial mechanistic experiments will be present and discuss. Then, we will describe more challenging hetero-coupling formation between diarylamines and carbazoles. The new ruthenium (II)/ copper (II) catalytic system allowed forming the ortho-N-carbazolation of diarylamines. This reaction performed under mild conditions (O2 as terminal oxidant) displays an unusual intramolecular N-H‱‱N interaction in the novel class of compounds. Finally, we will present a surprising metal free C-N bond formation between the ubiquitous phenols and the phenothiazines. Initially conducted in the presence of transition metals (RuII/CuII), this reaction proved to be efficient with the only effect of cumene and O2. Those components suggest a mechanism initiated by a Hock process. An initial infra-red analysis might point out a strong intramolecular O-H‱‱N interaction in the resulting products. These first elements of reactivity, developed within the laboratory for “modern dehydrogenative amination reactions”, will be presented and discussed

    Mechanism of the Dehydrogenative Phenothiazination of Phenols

    Get PDF
    The straightforward capture of oxidized phenothiazines with phenols under aerobic conditions represents a unique cross-dehydrogenative C-N bond-forming reaction in terms of operational simplicity. The mechanism of this cross-dehydrogenative N-arylation of phenothiazines with phenols has been the object of debate, particularly regarding the order in which the substrates are oxidized and their potentially radical or cationic nature. Understanding the selective reactivity of phenols for oxidized phenothiazines is one of the key objectives of this study. The reaction mechanism is investigated in detail by utilizing electron paramagnetic resonance spectroscopy, cyclic voltammetry, radical trap experiments, kinetic isotope effects, and solvent effects. Finally, the key reaction steps are calculated by using density functional theory (DFT) and broken-symmetry open-shell singlet DFT methods to unravel a unique biradical mechanism for the oxidative phenothiazination of phenols

    Novel Fat Taste Receptor Agonists Curtail Progressive Weight Gain in Obese Male MiceSummary

    No full text
    Background & Aims: The spontaneous preference for dietary lipids is principally regulated by 2 lingual fat taste receptors, CD36 and GPR120. Obese animals and most of human subjects exhibit low orosensory perception of dietary fat because of malfunctioning of these taste receptors. Our aim was to target the 2 fat taste receptors by newly synthesized high affinity fatty acid agonists to decrease fat-rich food intake and obesity. Methods: We synthesized 2 fat taste receptor agonists (FTA), NKS-3 (CD36 agonist) and NKS-5 (CD36 and GPR120 agonist). We determined their molecular dynamic interactions with fat taste receptors and the effect on Ca2+ signaling in mouse and human taste bud cells (TBC). In C57Bl/6 male mice, we assessed their gustatory perception and effects of their lingual application on activation of tongue-gut loop. We elucidated their effects on obesity and its related parameters in male mice fed a high-fat diet. Results: The two FTA, NKS-3 and NKS-5, triggered higher Ca2+ signaling than a dietary long-chain fatty acid in human and mouse TBC. Mice exhibited a gustatory attraction for these compounds. In conscious mice, the application of FTA onto the tongue papillae induced activation of tongue-gut loop, marked by the release of pancreato-bile juice into collecting duct and cholecystokinin and peptide YY into blood stream. Daily intake of NKS-3 or NKS-5 via feeding bottles decreased food intake and progressive weight gain in obese mice but not in control mice. Conclusions: Our results show that targeting fat sensors in the tongue by novel chemical fat taste agonists might represent a new strategy to reduce obesity
    corecore