182 research outputs found
Investigating the selectivity of weed harrowing with new methods
In six field experiments it was investigated whether row spacing, timing, direction and orientation of post-emergence weed harrowing in spring barley influenced the selectivity and whether it is important that increasing intensities of harrowing are generated either by increasing number of passes or increasing driving speed. Selectivity was defined as the relationship between crop burial in soil immediately after treatment and weed control. To estimate crop burial, digital image analysis was used in order to make the estimations objective. The study showed that narrow row spacing decreased selectivity in a late growth stage (21) whereas row spacing in the range of 5.3 cm to 24 cm had no effects in an early growth stage (12). Harrowing across rows decreased selectivity in one out of two experiments. Whether repeated passes with the harrowing were carried out in the same orientation along the rows or in alternative orientations forth and back was unimportant. There were indications that high driving speed decreases selectivity and that repeated passes with low driving speed are better than single treatments with high driving speed. Impacts on selectivity, however, were small and only significant at high degrees of weed control. Timing had no significant impact on selectivity
A Decision Support System for Diagnostics and Treatment Planning in Traumatic Brain Injury.
Traumatic brain injury (TBI) occurs when an external force causes functional or structural alterations in the brain. Clinical characteristics of TBI vary greatly from patient to patient, and a large amount of data is gathered during various phases of clinical care in these patients. It is hard for clinicians to efficiently integrate and interpret all of these data and plan interventions in a timely manner. This paper describes the technical architecture and functionality of a web-based decision support system (DSS), which not only provides advanced support for visualizing complex TBI data but also predicts a possible outcome by using a state-of-the-art Disease State Index machine-learning algorithm. The DSS is developed by using a three-layered architecture and by employing modern programming principles, software design patterns, and using robust technologies (C#, ASP.NET MVC, HTML5, JavaScript, Entity Framework, etc.). The DSS is comprised of a patient overview module, a disease-state prediction module, and an imaging module. After deploying it on a web-server, the DSS was made available to two hospitals in U.K. and Finland. Afterwards, we conducted a validation study to evaluate its usability in clinical settings. Initial results of the study indicate that especially less experience clinicians may benefit from this type of decision support software tool
Cardiac MR Motion Artefact Correction from K-space Using Deep Learning-Based Reconstruction
Incorrect ECG gating of cardiac magnetic resonance (CMR) acquisitions can lead to artefacts, which hampers the accuracy of diagnostic imaging. Therefore, there is a need for robust reconstruction methods to ensure high image quality. In this paper, we propose a method to automatically correct motion-related artefacts in CMR acquisitions during reconstruction from k-space data. Our method is based on the Automap reconstruction method, which directly reconstructs high quality MR images from k-space using deep learning. Our main methodological contribution is the addition of an adversarial element to this architecture, in which the quality of image reconstruction (the generator) is increased by using a discriminator. We train the reconstruction network to automatically correct for motion-related artefacts using synthetically corrupted CMR k-space data and uncorrupted reconstructed images. Using 25000 images from the UK Biobank dataset we achieve good image quality in the presence of synthetic motion artefacts, but some structural information was lost. We quantitatively compare our method to a standard inverse Fourier reconstruction. In addition, we qualitatively evaluate the proposed technique using k-space data containing real motion artefacts.</p
Un modèle de thorax respirant pour l'évaluation d'algorithmes de reconstruction d'organes en mouvement par tomographie virtuelle
Nous proposons un système de tomographie dynamique et virtuel du thorax destiné à mettre en évidence l'effet du mouvement respiratoire sur la reconstruction de coupes. Ce système est basé sur un modèle anatomique des structures du thorax animé de manière réaliste à partir de fonctions de déformation volumiques dites de forme libre. Des projections X sont simulées à partir de ce modèle dynamique dans des configurations conformes à celles utilisées sur les tomographes dynamiques. La reconstruction à partir des projections montre l'impact du mouvement respiratoire sur la qualité des coupes reconstruites
Computerized decision support is an effective approach to select memory clinic patients for amyloid-PET
Background:
The use of amyloid-PET in dementia workup is upcoming. At the same time, amyloid-PET is costly and limitedly available. While the appropriate use criteria (AUC) aim for optimal use of amyloid-PET, their limited sensitivity hinders the translation to clinical practice. Therefore, there is a need for tools that guide selection of patients for whom amyloid-PET has the most clinical utility. We aimed to develop a computerized decision support approach to select patients for amyloid-PET.
//
Methods:
We included 286 subjects (135 controls, 108 Alzheimer’s disease dementia, 33 frontotemporal lobe dementia, and 10 vascular dementia) from the Amsterdam Dementia Cohort, with available neuropsychology, APOE, MRI and [18F]florbetaben amyloid-PET. In our computerized decision support approach, using supervised machine learning based on the DSI classifier, we first classified the subjects using only neuropsychology, APOE, and quantified MRI. Then, for subjects with uncertain classification (probability of correct class (PCC) < 0.75) we enriched classification by adding (hypothetical) amyloid positive (AD-like) and negative (normal) PET visual read results and assessed whether the diagnosis became more certain in at least one scenario (PPC≥0.75). If this was the case, the actual visual read result was used in the final classification. We compared the proportion of PET scans and patients diagnosed with sufficient certainty in the computerized approach with three scenarios: 1) without amyloid-PET, 2) amyloid-PET according to the AUC, and 3) amyloid-PET for all patients.
//
Results:
The computerized approach advised PET in n = 60(21%) patients, leading to a diagnosis with sufficient certainty in n = 188(66%) patients. This approach was more efficient than the other three scenarios: 1) without amyloid-PET, diagnostic classification was obtained in n = 155(54%), 2) applying the AUC resulted in amyloid-PET in n = 113(40%) and diagnostic classification in n = 156(55%), and 3) performing amyloid-PET in all resulted in diagnostic classification in n = 154(54%).
//
Conclusion:
Our computerized data-driven approach selected 21% of memory clinic patients for amyloid-PET, without compromising diagnostic performance. Our work contributes to a cost-effective implementation and could support clinicians in making a balanced decision in ordering additional amyloid PET during the dementia workup
A Decision Support System for Diagnostics and Treatment Planning in Traumatic Brain Injury
Traumatic brain injury (TBI) occurs when an external force causes functional or structural alterations in the brain. Clinical characteristics of TBI vary greatly from patient to patient, and a large amount of data is gathered during various phases of clinical care in these patients. It is hard for clinicians to efficiently integrate and interpret all of these data and plan interventions in a timely manner. This paper describes the technical architecture and functionality of a web-based decision support system (DSS), which not only provides advanced support for visualizing complex TBI data but also predicts a possible outcome by using a state-of-the-art Disease State Index machine-learning algorithm. The DSS is developed by using a three-layered architecture and by employing modern programming principles, software design patterns, and using robust technologies (C#, ASP.NET MVC, HTML5, JavaScript, Entity Framework, etc.). The DSS is comprised of a patient overview module, a disease-state prediction module, and an imaging module. After deploying it on a web-server, the DSS was made available to two hospitals in U.K. and Finland. Afterwards, we conducted a validation study to evaluate its usability in clinical settings. Initial results of the study indicate that especially less experience clinicians may benefit from this type of decision support software tool
Informed consent for clinical trials in acute coronary syndromes and stroke following the European Clinical Trials Directive: investigators' experiences and attitudes
<p>Abstract</p> <p>Background</p> <p>During clinical trials in emergency medicine, providing appropriate oral and written information to a patient is usually a challenge. There is little published information regarding patients' opinions and competence to provide informed consent, nor on physicians' attitudes towards the process. We have investigated the problem of obtaining consent from patients in emergency-setting clinical trials (such as acute coronary syndromes (ACS) and stroke) from a physicians' perspective.</p> <p>Methods</p> <p>A standardised anonymous 14-item questionnaire was distributed to Polish cardiac and stroke centres.</p> <p>Results</p> <p>Two hundred and fourteen informative investigator responses were received. Of these investigators, 73.8% had experience with ACS and 25.2% had experience with acute stroke trials (and 1% with both fields). The complete model of informed consent (embracing all aspects required by Good Clinical Practice (GCP) and law) was used in 53.3% of cases in emergency settings, whereas the legal option of proxy consent was not used at all. While less than 15% of respondents considered written information to have been fully read by patients, 80.4% thought that the amount of information being given to emergency patients is too lengthy. Although there is no legal obligation, more than half of the investigators sought parallel consent (assent) from patients' relatives. Most investigators confirmed that they would adopt the model proposed by the GCP guidelines: abbreviated verbal and written consent in emergency conditions with obligatory "all-embracing" deferred consent to continue the trial once the patient is able to provide it. However, this model would not follow current Polish and European legislation.</p> <p>Conclusion</p> <p>An update of national and European regulations is required to enable implementation of the emergency trial consent model referred to in GCP guidelines.</p
Midlife Insulin Resistance as a Predictor for Late-Life Cognitive Function and Cerebrovascular Lesions
Background: Type 2 diabetes (T2DM) increases the risk for Alzheimer's disease (AD) but not for AD neuropathology. The association between T2DM and AD is assumed to be mediated through vascular mechanisms. However, insulin resistance (IR), the hallmark of T2DM, has been shown to associate with AD neuropathology and cognitive decline.Objective: To evaluate if midlife IR predicts late-life cognitive performance and cerebrovascular lesions (white matter hyperintensities and total vascular burden), and whether cerebrovascular lesions and brain amyloid load are associated with cognitive functioning.Methods: This exposure-to-control follow-up study examined 60 volunteers without dementia (mean age 70.9 years) with neurocognitive testing, brain 3T-MRI and amyloid-PET imaging. The volunteers were recruited from the Finnish Health 2000 survey (n = 6062) to attend follow-up examinations in 2014-2016 according to their insulin sensitivity in 2000 and their APOE genotype. The exposure group (n = 30) had IR in 2000 and the 30 controls had normal insulin sensitivity. There were 15 APOE epsilon 4 carriers per group. Statistical analyses were performed with multivariable linear models.Results: At follow-up the IR+group performed worse on executive functions (p = 0.02) and processing speed (p = 0.007) than the IR- group. The groups did not differ in cerebrovascular lesions. No associations were found between cerebrovascular lesions and neurocognitive test scores. Brain amyloid deposition associated with slower processing speed.Conclusion: Midlife IR predicted poorer executive functions and slower processing speed, but not cerebrovascular lesions. Brain amyloid deposition was associated with slower processing speed. The association between midlife IR and late-life cognition might not be mediated through cerebrovascular lesions measured here
Regional brain morphometry in patients with traumatic brain injury based on acute- and chronic-phase magnetic resonance imaging
Traumatic brain injury (TBI) is caused by a sudden external force and can be very heterogeneous in its manifestation. In this work, we analyse T1-weighted magnetic resonance (MR) brain images that were prospectively acquired from patients who sustained mild to severe TBI. We investigate the potential of a recently proposed automatic segmentation method to support the outcome prediction of TBI. Specifically, we extract meaningful cross-sectional and longitudinal measurements from acute-and chronic-phase MR images. We calculate regional volume and asymmetry features at the acute/subacute stage of the injury (median: 19 days after injury), to predict the disability outcome of 67 patients at the chronic disease stage (median: 229 days after injury). Our results indicate that small structural volumes in the acute stage (e. g. of the hippocampus, accumbens, amygdala) can be strong predictors for unfavourable disease outcome. Further, group differences in atrophy are investigated. We find that patients with unfavourable outcome show increased atrophy. Among patients with severe disability outcome we observed a significantly higher mean reduction of cerebral white matter (3.1%) as compared to patients with low disability outcome (0.7%)
Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's Disease
Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI).In this paper, we propose an innovative approach to robustly and accurately detect Alzheimer's disease (AD) based on the distinction of specific atrophic patterns of anatomical structures such as hippocampus (HC) and entorhinal cortex (EC). The proposed method simultaneously performs segmentation and grading of structures to efficiently capture the anatomical alterations caused by AD. Known as SNIPE (Scoring by Non-local Image Patch Estimator), the novel proposed grading measure is based on a nonlocal patch-based frame-work and estimates the similarity of the patch surrounding the voxel under study with all the patches present in different training populations. In this study, the training library was composed of two populations: 50 cognitively normal subjects (CN) and 50 patients with AD, randomly selected from the ADNI database. During our experiments, the classification accuracy of patients (CN vs. AD) using several biomarkers was compared: HC and EC volumes, the grade of these structures and finally the combination of their volume and their grade. Tests were completed in a leave-one-out framework using discriminant analysis. First, we showed that biomarkers based on HC provide better classification accuracy than biomarkers based on EC. Second, we demonstrated that structure grading is a more powerful measure than structure volume to distinguish both populations with a classification accuracy of 90%. Finally, by adding the ages of subjects in order to better separate age-related structural changes from disease-related anatomical alterations, SNIPE obtained a classification accuracy of 93%Data collection and sharing for this project were funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Insti- tute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514, and the Dana Foundation.Coupé, P.; Eskildsen, SF.; Manjón Herrera, JV.; Fonov, VS.; Collins, DL.; Alzheimer's Dis Neuroimaging (2012). Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's Disease. NeuroImage. 59(4):3736-3747. https://doi.org/10.1016/j.neuroimage.2011.10.080S3736374759
- …
