9 research outputs found

    Characterizing COVID-19 clinical phenotypes and associated comorbidities and complication profiles

    Get PDF
    Purpose Heterogeneity has been observed in outcomes of hospitalized patients with coronavirus disease 2019 (COVID-19). Identification of clinical phenotypes may facilitate tailored therapy and improve outcomes. The purpose of this study is to identify specific clinical phenotypes across COVID-19 patients and compare admission characteristics and outcomes. Methods This is a retrospective analysis of COVID-19 patients from March 7, 2020 to August 25, 2020 at 14 U.S. hospitals. Ensemble clustering was performed on 33 variables collected within 72 hours of admission. Principal component analysis was performed to visualize variable contributions to clustering. Multinomial regression models were fit to compare patient comorbidities across phenotypes. Multivariable models were fit to estimate associations between phenotype and in-hospital complications and clinical outcomes. Results The database included 1,022 hospitalized patients with COVID-19. Three clinical phenotypes were identified (I, II, III), with 236 [23.1%] patients in phenotype I, 613 [60%] patients in phenotype II, and 173 [16.9%] patients in phenotype III. Patients with respiratory comorbidities were most commonly phenotype III (p = 0.002), while patients with hematologic, renal, and cardiac (all p<0.001) comorbidities were most commonly phenotype I. Adjusted odds of respiratory, renal, hepatic, metabolic (all p<0.001), and hematological (p = 0.02) complications were highest for phenotype I. Phenotypes I and II were associated with 7.30- fold (HR:7.30, 95% CI:(3.11-17.17), p<0.001) and 2.57-fold (HR:2.57, 95% CI:(1.10-6.00), p = 0.03) increases in hazard of death relative to phenotype III. Conclusion We identified three clinical COVID-19 phenotypes, reflecting patient populations with different comorbidities, complications, and clinical outcomes. Future research is needed to determine the utility of these phenotypes in clinical practice and trial design

    An Efficient Pseudospectral Method for Solving a Class of Nonlinear Optimal Control Problems

    No full text
    This paper gives a robust pseudospectral scheme for solving a class of nonlinear optimal control problems (OCPs) governed by differential inclusions. The basic idea includes two major stages. At the first stage, we linearize the nonlinear dynamical system by an interesting technique which is called linear combination property of intervals. After this stage, the linearized dynamical system is transformed into a multi domain dynamical system via computational interval partitioning. Moreover, the integral form of this multidomain dynamical system is considered. Collocating these constraints at the Legendre Gauss Lobatto (LGL) points together with using the Legendre Gauss Lobatto quadrature rule for approximating the involved integrals enables us to transform the basic OCPs into the associated nonlinear programming problems (NLPs). In all parts of this procedure, the associated control and state functions are approximated by piecewise constants and piecewise polynomials, respectively. An illustrative example is provided for confirming the accuracy and applicability of the proposed idea

    An efficient pseudospectral method for solving a class of nonlinear optimal control problems

    Get PDF
    This paper gives a robust pseudospectral scheme for solving a class of nonlinear optimal control problems (OCPs) governed by differential inclusions. The basic idea includes two major stages. At the first stage, we linearize the nonlinear dynamical system by an interesting technique which is called linear combination property of intervals. After this stage, the linearized dynamical system is transformed into a multi domain dynamical system via computational interval partitioning. Moreover, the integral form of this multidomain dynamical system is considered. Collocating these constraints at the Legendre Gauss Lobatto (LGL) points together with using the Legendre Gauss Lobatto quadrature rule for approximating the involved integrals enables us to transform the basic OCPs into the associated nonlinear programming problems (NLPs). In all parts of this procedure, the associated control and state functions are approximated by piecewise constants and piecewise polynomials, respectively. An illustrative example is provided for confirming the accuracy and applicability of the proposed idea

    Characterizing COVID-19 clinical phenotypes and associated comorbidities and complication profiles.

    No full text
    PurposeHeterogeneity has been observed in outcomes of hospitalized patients with coronavirus disease 2019 (COVID-19). Identification of clinical phenotypes may facilitate tailored therapy and improve outcomes. The purpose of this study is to identify specific clinical phenotypes across COVID-19 patients and compare admission characteristics and outcomes.MethodsThis is a retrospective analysis of COVID-19 patients from March 7, 2020 to August 25, 2020 at 14 U.S. hospitals. Ensemble clustering was performed on 33 variables collected within 72 hours of admission. Principal component analysis was performed to visualize variable contributions to clustering. Multinomial regression models were fit to compare patient comorbidities across phenotypes. Multivariable models were fit to estimate associations between phenotype and in-hospital complications and clinical outcomes.ResultsThe database included 1,022 hospitalized patients with COVID-19. Three clinical phenotypes were identified (I, II, III), with 236 [23.1%] patients in phenotype I, 613 [60%] patients in phenotype II, and 173 [16.9%] patients in phenotype III. Patients with respiratory comorbidities were most commonly phenotype III (p = 0.002), while patients with hematologic, renal, and cardiac (all pConclusionWe identified three clinical COVID-19 phenotypes, reflecting patient populations with different comorbidities, complications, and clinical outcomes. Future research is needed to determine the utility of these phenotypes in clinical practice and trial design

    The role of extracellular vesicles when innate meets adaptive

    No full text
    Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments

    The role of extracellular vesicles when innate meets adaptive

    No full text

    Industrial Policy in Egypt 2004-2011

    No full text
    corecore