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Abstract

Purpose

Heterogeneity has been observed in outcomes of hospitalized patients with coronavirus dis-

ease 2019 (COVID-19). Identification of clinical phenotypes may facilitate tailored therapy

and improve outcomes. The purpose of this study is to identify specific clinical phenotypes

across COVID-19 patients and compare admission characteristics and outcomes.

Methods

This is a retrospective analysis of COVID-19 patients from March 7, 2020 to August 25,

2020 at 14 U.S. hospitals. Ensemble clustering was performed on 33 variables collected

within 72 hours of admission. Principal component analysis was performed to visualize vari-

able contributions to clustering. Multinomial regression models were fit to compare patient

comorbidities across phenotypes. Multivariable models were fit to estimate associations

between phenotype and in-hospital complications and clinical outcomes.

Results

The database included 1,022 hospitalized patients with COVID-19. Three clinical pheno-

types were identified (I, II, III), with 236 [23.1%] patients in phenotype I, 613 [60%] patients
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in phenotype II, and 173 [16.9%] patients in phenotype III. Patients with respiratory comor-

bidities were most commonly phenotype III (p = 0.002), while patients with hematologic,

renal, and cardiac (all p<0.001) comorbidities were most commonly phenotype I. Adjusted

odds of respiratory, renal, hepatic, metabolic (all p<0.001), and hematological (p = 0.02)

complications were highest for phenotype I. Phenotypes I and II were associated with 7.30-

fold (HR:7.30, 95% CI:(3.11–17.17), p<0.001) and 2.57-fold (HR:2.57, 95% CI:(1.10–6.00),

p = 0.03) increases in hazard of death relative to phenotype III.

Conclusion

We identified three clinical COVID-19 phenotypes, reflecting patient populations with differ-

ent comorbidities, complications, and clinical outcomes. Future research is needed to deter-

mine the utility of these phenotypes in clinical practice and trial design.

Introduction

The coronavirus disease 2019 (COVID-19), a disease caused by the severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2), has infected over 18 million and led to over 700,000

deaths since first appearing in late 2019 [1]. Researchers are rapidly attempting to understand

the natural history of and immune response to COVID-19 [2]. Despite intense research since

the arrival of this novel coronavirus [3], only one pharmaco-therapeutic agent, dexametha-

sone, has been associated with reduced mortality in at-risk individuals [4]. COVID-19 results

in a constellation of symptoms, laboratory derangement, immune dysregulation, and clinical

complications [5].

Emergency department presentation varies widely, suggesting distinct clinical phenotypes

exist and, importantly, it is likely these distinct phenotypes respond differently to treatment.

To illustrate, two early phenotypes of respiratory failure likely exist in COVID-19. A classic

ARDS phenotype exists with poorly compliant lungs and poor gas exchange; however, a phe-

notype with normal lung compliance also exists in COVID-19 and is hypothesized to be driven

by shunting secondary to pulmonary microthrombi [6, 7]. An intricate, multidimensional

view is required to adequately understand the disease and account for the variation in clinical

outcomes. Furthermore, patients could benefit from phenotype-specific medical care, which

may differ from established standards of care.

Despite this need, few studies have characterized COVID-19 clinical phenotypes and evalu-

ated their association with complications and clinical outcomes. The aim of this study was to

characterize clinical phenotypes in COVID-19 according to disease-system factors using elec-

tronic health record (EHR) data pooled from 14 U.S. Midwest hospitals between March 7,

2020 and August 25, 2020.

Materials and methods

Data collection

The data source for this study included EHR reports from 14 U.S. Midwest hospitals and 60

primary care clinics across Minnesota. The healthcare system includes an academic quaternary

center along with community hospitals all capable of providing critical care. Patient and hospi-

tal-level data were available for 7,538 patients with PCR-confirmed COVID-19. Of these, 1,022

required hospital admission and were included in this analysis. The database included all
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comorbidities reported since March 29, 1997 for each patient and prior to their COVID-19

diagnosis. The database also included home medications, laboratory values, clinic visits, social

history, and patient demographics (age, gender, race/ethnicity, language spoken, zip code,

socioeconomic status indicators). Race/ethnicity are self-reported. For each COVID-19 hospi-

talization the database included all laboratory values, vitals, orders, medications, complica-

tions, length of stay, and hospital disposition. State death certificate data was linked with the

database to enable capture of out-of-hospital death. Additionally, the database allowed linkage

across the 14 hospitals, facilitating the tracking of transfers.

The study was approved by all hospitals within the MHealth Fairview system which

includes ethical approval by the University of Minnesota institutional review board. All

patients have the option to opt-out of research upon establishing care within the MHealth

Fairview healthcare system. Data is aggregated through the University of Minnesota’s central-

ized informatics center and de-identified prior to analysis. Data were pooled across different

electronic health records (EHRs) utilizing a unique patient identifier to account for health care

encounters across systems. This study was approved by the University of Minnesota institu-

tional review board (STUDY00001489), which provided a waiver of consent for this study.

Participants

Patient-level data were obtained from the COVID-19 database from March 7, 2020 to August

25, 2020. The inclusion criterion was as follows: PCR-positive COVID-19 test requiring inpa-

tient hospital admission to one of the 14 hospitals providing data. No hospitalized patients

were excluded in this analysis to maximize generalizability. Follow-up data were available for a

minimum of two weeks following admission for all patients.

Clinical variables for phenotyping

We selected 33 variables for clustering based on their association with COVID-19 mortality,

known COVID-19 pathophysiology, and presence in the database (no more than 50% missing-

ness) [8–11]. The following variables were included: age, body mass index (BMI), heart rate,

respiratory rate, oxygen saturation, pulse pressure, systolic blood pressure, total protein, red

cell distribution width, mean corpuscular volume, alkaline phosphatase, calcium, anion gap,

bicarbonate, hematocrit, aspartate aminotransferase, glucose, absolute monocyte count, abso-

lute neutrophil count, absolute lymphocyte count, white blood cell count, platelet, albumin,

bilirubin, international normalized ratio (INR), lactate dehydrogenase, potassium, sodium, D-

dimer, hemoglobin, C-reactive protein (CRP), creatinine, and gamma gap. For each variable

we selected the first recorded value within the first 72 hours of the emergency department

(ED) presentation that ultimately resulted in their hospitalization.

Comorbidities

We selected 68 comorbidities documented for each patient from March 29, 1997 preceding

their COVID-19 hospital admission in their electronic health record (S1 Table). All comorbid-

ities were identified based on ICD-9, ICD-10, or problem list documentation within the elec-

tronic health record. An indicator variable was created for each comorbidity to denote the

presence of the selected ICD-9, ICD-10, or problem list documentation at any time in the

medical record. To facilitate analysis, comorbidities were grouped by organ system into the

following categories: cardiac, respiratory, hematologic, metabolic, renal, hepatic, autoimmune,

cancer, and cerebrovascular disease.
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Complications and clinical outcomes

We selected 30 in-hospital complications measured during each patient’s hospital stay for

COVID-19 categorized into the following systems: cardiovascular, respiratory, hematologic,

renal, hepatic, metabolic, and infectious (S2 Table). If applicable, complications could span

multiple organ system variables. For example, ventilator associated pneumonia was included

in both infectious and respiratory complications. Additional clinical outcomes included hospi-

tal length of stay (LOS), need for intensive care unit (ICU) admission, need for mechanical

ventilation, and mortality. Mortality was defined as any in-hospital or out-of-hospital death

based on death certificate data. All complications and outcomes were followed for a minimum

of 2 weeks following hospital admission.

Statistical analysis

The overall rate of missingness of the 33 variables used for phenotyping, which included the

first vitals and labs recorded for each inpatient within 72 hours of admission, was 19% (range

0% - 50%). We imputed missing values using multivariate imputations by chained equations

implemented with the mice package (v.3.10.0) [12, 13]. Data were log-transformed before

imputing missing values with predictive mean matching. A total of 40 imputed datasets were

generated. The diceR package (v.1.0.0) [14] was used to perform k-means-based consensus

clustering on each imputed dataset using 80% subsamples and 1,000 iterations. We considered

grouping patients into 2–7 phenotypes and determined the optimal number was 3 by evaluat-

ing the consensus cumulative distribution function (CDF) plot, the delta area plot, and the

consensus matrix heatmap. These figures were generated using the consensus clustering results

for each imputed dataset, and all figures were qualitatively similar across datasets. For visuali-

zation purposes, these images are provided for a randomly selected imputed dataset in S1–S4

Figs. The final assignment of each patient into one of the three phenotypes was determined by

majority voting across the 40 consensus clustering results. Principal component analysis

(PCA) was performed on the average covariance matrix to visualize the relationships among

the three phenotypes and assess variable contributions [15].

Continuous variables were summarized using the median and interquartile range (IQR)

and compared across phenotypes using a Kruskal-Wallis test. Categorical characteristics and

outcomes were summarized using counts and proportions and compared across phenotypes

using a Pearson’s chi-squared test or Fisher’s exact test. Multinomial regression models were

fit to further compare patient comorbidities across phenotype classification.

We next evaluated the relationship between phenotype and subsequent outcomes using

both unadjusted and adjusted models. The adjusted models included sex [16, 17], race and eth-

nicity (white, Black, Asian, Hispanic, other, not reported) [18], and Elixhauser Comorbidity

Index [19], since these are known risk factors for the outcomes of interest and were not

included in the clustering analysis. The associations between phenotype and complications,

ICU admission and need for mechanical ventilation, were estimated using logistic regression

models. Mortality was compared across phenotypes using Cox proportional hazard models

and patients were censored at the last date of data collection, August 25, 2020. Hospital length

of stay was compared across phenotypes using negative binomial regression models. The pri-

mary negative binomial model included individuals who died during hospitalization for

whom length of stay was defined as the number of days until death. We performed a sensitivity

analysis to assess the impact of mortality as a competing risk by refitting the length of stay

model after removing the 127 patients who died. Two-sided p-values < 0.05 were considered

statistically significant. P-values were not adjusted for multiple comparisons. Visualizations of

comorbidities, complications, and outcomes by clinical phenotype were performed using the
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circlize package for R [20]. Comorbidities and complications were grouped into separate organ

systems and the prevalence of each complication/comorbidity type was calculated as a percent-

age for each phenotype. All analyses were conducted using R version 3.6.3 [21] and Stata ver-

sion 16.1 (StataCorp).

Results

The database included 1,022 patients requiring hospital admission with COVID-19. Among

these patients, the median age was 62.1 [IQR: 45.9, 75.8] years; 481 [48.6%] male, 412 [40.3%]

required ICU admission. Additionally, 437 [46.7%] were white, 188 [20.1%] were Black, 159

[17.0%] were Asian, 103 [11.0%] were Hispanic, 20 [2.1%] reported other race, and 28 [2.9%]

did not report. Three clinical phenotypes were identified (I, II, III); 236 [23.1%] patients had

phenotype I, 613 [60%] patients had phenotype II, and 173 [16.9%] patients had phenotype III.

Variable contributions to clustering

The first two principal components (PCs) from PCA were used to visualize the relationship

between phenotypes. PC1 and PC2 captured approximately 11% and 9% of the variance in the

clustering variables, respectively. Thirteen components were needed to explain 70% of the var-

iance (S5 Fig). While phenotypes II and III overlay substantially, phenotype I is more clearly

defined in the right-hand side of the score plot of the first two principal components (Fig 1).

Notably, this figure shows that distinctions between phenotypes are primarily driven by varia-

tion in PC1 as opposed to PC2. The variable contributions to PC1 (S6 Fig) demonstrate that

the largest contributors to the variation in PC1 are from lactate dehydrogenase (LDH), abso-

lute neutrophil count, and D-dimer. These variables therefore prominently contribute to sepa-

rating the three phenotypes as shown in the biplot (Fig 2). Univariate tests showed that LDH,

D-dimer, and neutrophil count are highest in phenotype I. Other variables influential to phe-

notype clustering are white cell count (highest in I), C-reactive protein (highest in I), albumin

(highest in III), aspartate aminotransferase (highest in I), bilirubin (highest in I), and oxygen

saturation (highest in III).

Phenotype characteristics

Differences across phenotypes with respect to patient demographics, admission vitals and labs,

complications, comorbidities, and clinical outcomes are presented in Table 1. Patients with

phenotype I were older than patients in phenotypes II and III (67.2 [52.9, 79.0] years vs. 60.9

[45.9, 75.4] and 58.6 [34.8, 71.3] years respectively, p < 0.001). Patients with phenotype III

were more often female than patients with phenotype I or II (57.6% vs. 41.6% and 53.4%,

respectively, p = 0.002). Patients with phenotype I were less likely to be white (38.8% vs. 45.6%

vs. 60.7%, respectively, p = 0.002) and more likely to be non-English speaking (47.9% vs. 39.2%

vs. 23.7%, respectively, p<0.001). There were no statistically significant differences in BMI or

socioeconomic status, as measured using the area deprivation index, between phenotypes

(Table 1). Patients that presented with phenotype III had a more frequent history of smoking,

alcohol abuse, and neutropenia. Patients that presented with phenotype II had a less frequent

history of hepatic disease than phenotypes I or III (Table 1).

When grouping comorbidities by organ system, cardiac (p<0.001), respiratory (p = 0.002),

hematologic (p<0.001), and renal (p<0.001) comorbidities were found to be significantly

associated with phenotype. Cancer, hepatic, autoimmune, cerebrovascular, and metabolic

comorbidities were not significantly associated with phenotype (Table 1, S7 Fig). Based on the

estimated relative risk ratios, patients with renal (RRR 2.35; 95% CI 1.5–3.67; p<0.001), hema-

tologic (RRR 2.64; 95% CI 1.75–3.98; p<0.001), and cardiac comorbidities (RRR 2.65; 95% CI:
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1.68–4.17; p <0.001) were more likely to have phenotype I vs. III (Fig 3). Patients with respira-

tory comorbidities were 0.47 (95% CI: 0.31–0.72; p<0.001) times as likely to have phenotype I

vs. III and 0.74 (95% CI: 0.52–1.04 p = 0.09) times as likely to have phenotype II vs. III (Fig 3).

Association between phenotype and clinical outcomes

Clinical phenotypes I and II were associated with increased odds of respiratory (I: OR: 2.98,

95% CI 1.58–5.59; II: OR: 2.32, 95% CI: 1.29–4.17; p<0.001), renal (I: OR: 7.04, 95% CI 3.11–

15.9; II: OR: 2.57, 95% CI: 1.15–5.74; p<0.001), and metabolic (I: OR: 4.85, 95% CI: 2.78–8.45;

II: OR: 2.57, 95% CI: 1.52–4.34; p<0.001) complications, compared to phenotype III after

adjusting for sex, race, and Elixhauser Comorbidity Index (S3 Table). There was a trend

towards increased odds of hematologic complications among patients with phenotype I (I:

OR: 2.11, 95% CI: 0.99–4.48, p = 0.05) compared to III. Phenotype was associated with hepatic

complications (p<0.001); however, while phenotype I was associated with a 8.35-fold (OR:

8.35, 95% CI: 1.93–36.11, p< 0.001) increase in the odds of hepatic complication, phenotype

II did not differ significantly from phenotype III (OR: 0.56, 95% CI: 0.10–3.09, p = 0.51). This

is not surprising since only 4 individuals in phenotype II and 2 in phenotype III experienced

hepatic complications during hospitalization (Table 1). Phenotype was also significantly asso-

ciated with the rate of infectious complications (p<0.001) for phenotype 1 (OR 2.57, 95% CI

1.57–4.21;<0.001) but not did not reach statistical significance for phenotype 2 (OR 1.51, 95%

CI 0.96–2.38; p = 0.07) (S3 Table and S8 Fig).

Clinical phenotypes differed in odds of ICU admission (p<0.001) and mechanical ventila-

tion (p<0.001), hospital LOS (p<0.001), and risk of mortality (<0.001) on adjusted analysis

which accounted for sex, race, and Elixhauser Comorbidity Index (Table 2, S9 Fig). Control-

ling for these risk factors and compared to phenotype III, phenotypes I and II were associated

with 7.88-fold (OR: 7.88, 95% CI: 4.65–13.37) and 2.32-fold (OR: 2.32, 95% CI: 1.46–3.68)

increases in the odds of ICU admission, respectively. Phenotypes I and II were associated with

25.59-fold (OR: 25.59, 95% CI: 7.69,-85.17) and 7.45-fold (OR: 7.45, 95% CI: 2.27–24.43)

increases in the odds of requiring mechanical ventilation. Phenotypes I and II were associated

with 1.74-fold (IRR: 1.74, 95% CI: 1.45–2.10, p<0.001) and 1.22-fold (IRR: 1.22, 95% CI: 1.05–

1.43, p = 0.01) increases in hospital LOS. Phenotype I was associated with a 7.30-fold (HR:

7.30, 95% CI: 3.11–17.17, p<0.001) increase in risk of mortality, and Phenotype II had a

2.57-fold (HR: 2.57, 95% CI: 1.10–6.00, p = 0.03) increase in the hazard of death compared to

Phenotype 3. We performed a sensitivity analysis to assess the impact of mortality as a compet-

ing risk by fitting the LOS model before and after removing the 127 patients who died. The

estimated effect sizes were similar between these two models (S4 Table). Table 2 includes the

LOS model with only survivors. S4 Table shows the home medications and Day 5 labs of the

three identified phenotypes (S5 Table).

Discussion

This is one of the first studies to report on clinical phenotypes associated with COVID-19. We

identified three clinical phenotypes for patients with COVID-19 on hospital presentation.

Most patients presented with phenotype II, which is associated with a moderate course and an

approximately 10% mortality. A subset of patients presented with the more severe phenotype

I, which is associated with a staggering 27% mortality. Patients with cardiac, hematologic, and

Fig 1. Score plot: PC2 vs. PC1. The principal component scores for PC1 and PC2 are plotted. Each point represents a patient in the dataset. Colors

represent the cluster (phenotype) that the patient was assigned to by consensus clustering. Ellipses around each cluster/phenotype specify 95%

confidence intervals, assuming a bivariate normal distribution. Abbreviations: PC1 (principal component 1); PC2 (principal component 2).

https://doi.org/10.1371/journal.pone.0248956.g001
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renal comorbidities were most likely to be characterized by phenotype I. Surprisingly, respira-

tory comorbidities appeared less related to phenotypes I or II and were most associated with

phenotype III, which had the most indolent course. Despite this indolent course, patients with

phenotype III had the highest rate of readmission which is likely in part due to the high sur-

vival rate. This also suggests patients with pre-existing respiratory comorbidities, while not at

highest risk for mortality, may be at highest risk for long term sequalae following COVID-19.

Patients that presented with phenotype I were most associated with the development of respi-

ratory, hematologic, renal, metabolic, hepatic, and infectious complications. Surprisingly, car-

diovascular complications did not significantly differ between phenotypes.

Elucidating patient risk factors and severe COVID-19 disease markers may allow early

treatment implementation that may improve the patient’s outcome. Multiple studies have doc-

umented COVID-19 risk factors; however, most have done so from a homogenous lens. For

example, a prospective cohort study from New York City identified that the most considerable

risks for hospital admission were age, male sex, heart failure, chronic kidney disease, and high

BMI [22]. A large observational study conducted in the UK reported that increasing age, male

gender, comorbidities such as cardiac disease, chronic lung disease, chronic kidney disease,

and obesity were associated with higher mortality in COVID-19 positive patients admitted to

the hospital.14 A study from China found that increased odds of in-hospital death due to

COVID-19 were associated with older age, higher sequential organ failure assessment (SOFA)

score and D-dimers > 1.0 μg/mL on admission [23]. Another retrospective study reported

that patients with severe COVID-19 disease and diabetes had increased leucocytes, neutrophils

count, and increased C-reactive protein (CRP), D-dimers, fibrinogen levels [24]. A systematic

review and meta-analysis found that the biomarkers associated with increased mortality

include higher CRP, higher D-dimers, increased creatinine, and lower albumin levels [25].

However it is well known that patients do not have a singular natural history of disease. Multi-

ple studies including this study found that only half of patients suffer a primarily respiratory

disease [26, 27]. Patients suffer a constellation of cardiovascular, hematologic, renal, or hepatic

progression of disease following COVID-19. It is likely patient baseline risk factors related to

the virus [28], home medications [16, 29], genetic predisposition [30], race/ethnicity [18], and

other factors predispose patients to one of the various clinical manifestations and natural his-

tory of COVID-19.

Treatment of hospitalized patients should be tailored based on the clinical courses most

likely for a patient given their a priori risk. For example, phenotypes with a higher risk of

thrombotic events, may benefit from more aggressive anticoagulation. Phenotypes more

prone to infectious complications, may benefit from more targeted immunomodulation

instead of broad and systemic steroid therapy. A key first step to evaluate these treatment deci-

sions is to characterize and describe clinical phenotypes requiring hospitalization. In this anal-

ysis we identified three clinical phenotypes for patients that required hospitalization for

COVID-19. Few studies to date have attempted to elucidate clinical phenotypes. One study

attempted to characterize clinical phenotypes at ICU admission using a dataset of 85 critically

ill patients [31]. Similar to our analysis, they identified three distinct clinical phenotypes. Their

Fig 2. PCA biplot: PC2 vs. PC1. The scores (points) and loadings (arrows) of PC1 and PC2 are plotted for each patient and variable in the model. 95%

confidence ellipses for the scores are shown. The biplot facilitates interpretation of the scores and loadings, assigning context to the variables which

prominently contribute to the phenotypes. Abbreviations: PC1 (principal component 1); PC2 (principal component 2); PCA (principal component

analysis); Abs_Nphil_Ct (absolute neutrophil count); LDH (lactate dehydrogenase); CRP (C-reactive protein); WBC (white blood cell count); HCT

(hematocrit); HGB (hemoglobin); Tbili (total bilirubin); RDW (red cell distribution width); AST (aspartate aminotransferase); Alk_phos (alkaline

phosphatase); RR (respiratory rate); CA (calcium); TP (total protein); INR (internal normalized ratio of prothrombin time); CO2 (carbon dioxide); K

(potassium); O2SAT (oxygen saturation); BMI (body mass index); PLT (platelet); PP (pulse pressure); Na (sodium); SBP (systolic blood pressure);

Abs_mono_ct (absolute monocyte count); MCV (mean corpuscular volume).

https://doi.org/10.1371/journal.pone.0248956.g002
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Table 1. Baseline demographics, comorbidities, and clinical outcomes of hospitalized COVID-19 patients with clinical phenotypes I, II, and III.

Phenotype I Phenotype II Phenotype III P-value

N = 236 N = 613 N = 173

Demographics

Age (years) 67.2 (52.9–79.0) 60.9 (45.9–75.4) 58.6 (34.8–71.3) <0.001

Male 132 (58.4%) 277 (46.6%) 72 (42.4%) 0.002

Race / Ethnicity 0.002

White 81 (38.8%) 257 (45.6%) 99 (60.7%)

Black 53 (25.4%) 105 (18.7%) 30 (18.4%)

Asian 39 (18.7%) 101 (17.9%) 19 (11.7%)

Hispanic 26 (12.4%) 66 (11.7%) 11 (6.7%)

Declined 3 (1.4%) 22 (3.9%) 3 (1.8%)

Other 7 (3.3%) 12 (2.1%) 1 (0.6%)

Non-English Speaking 113 (47.9%) 240 (39.2%) 41 (23.7%) <0.001

National ADI 44.5 (25.0–56.0) 43.0 (25.0–56.0) 37.0 (26.0–62.0) 0.76

BMI (kg/m2), mean (SD) 29.5 (8.9) 30.8 (8.2) 30.4 (13.4) 0.21

Smoker 9 (3.8) 44 (7.2) 18 (10.4) 0.03

Alcohol abuse 14 (5.9) 47 (7.7) 28 (16.2) <0.001

Comorbidities

Elixhauser Comorbidity Index 7.0 (4.0–10.0) 5.0 (3.0–9.0) 5.0 (2.0–8.0) <0.001

Cardiac 194 (82.2%) 428 (69.8%) 110 (63.6%) <0.001

Respiratory 55 (23.3%) 198 (32.3%) 68 (39.3%) 0.002

Hematologic 127 (53.8%) 220 (35.9%) 53 (30.6%) <0.001

Metabolic 175 (74.2%) 477 (77.8%) 121 (69.9%) 0.08

Renal 92 (39.0%) 170 (27.7%) 37 (21.4%) <0.001

Hepatic 46 (19.5%) 82 (13.4%) 25 (14.5%) 0.08

Autoimmune 40 (16.9%) 126 (20.6%) 23 (13.3%) 0.07

Cancer 29 (12.3%) 73 (11.9%) 16 (9.2%) 0.58

Cerebrovascular disease 52 (22.0%) 106 (17.3%) 33 (19.1%) 0.28

Blood Type O 72 (42.4%) 158 (39.0%) 39 (37.5%) 0.67

In-hospital Complications

Cardiovascular 16 (6.8%) 46 (7.5%) 13 (7.5%) 0.93

Respiratory 49 (20.8%) 104 (17.0%) 14 (8.1%) 0.002

Hematologic 27 (11.4%) 35 (5.7%) 10 (5.8%) 0.01

Renal 54 (22.9%) 60 (9.8%) 7 (4.0%) <0.001

Metabolic 85 (36.0%) 141 (23.0%) 18 (10.4%) <0.001

Hepatic 21 (8.9%) 4 (0.7%) 2 (1.2%) <0.001

Infectious 76 (32.2%) 134 (21.9%) 27 (15.6%) <0.001

Clinical Outcomes

ICU Admission 158 (66.9%) 220 (35.9%) 34 (19.7%) <0.001

Mechanical Ventilation 98 (41.5%) 88 (14.4%) 4 (2.3%) <0.001

Hospital Readmission 6 (2.5%) 29 (4.7%) 14 (8.1%) 0.03

ECMO 7 (3.0%) 1 (0.2%) 0 (0.0%) <0.001

In- or Out of hospital mortality 63 (26.7%) 57 (9.3%) 7 (4.0%) <0.001

Admission Vitals and Labs Phenotype I Phenotype II Phenotype III P value

Heart rate (mean (SD)) 96.17 (20.82) 93.93 (19.35) 90.16 (22.3) 0.01

Respiratory rate 22.0 (18.0–28.0) 20.0 (18.0–23.0) 18.0 (16.0–20.0) <0.001

Oxygen saturation 94.0 (89.0–97.0) 95.0 (92.0–97.0) 97.0 (95.0–99.0) <0.001

Pulse pressure 55.0 (43.5–70.5) 53.0 (43.0–68.0) 51.0 (40.0–62.0) 0.02

(Continued)
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low mortality cluster which they called cluster 1 was very similar to our phenotype III with a

predominance of females, lower mortality rate, lower D-dimer and CRP levels. Similarly, their

high mortality cluster was predominantly male, with elevated inflammation markers on ICU

presentation. In this study, we not only characterized three clinical phenotypes, but extended

findings outside of the ICU by characterizing the association of comorbidities with clinical

phenotype and the association of clinical phenotypes with in-hospital complication and clini-

cal outcomes.

Phenotype I can be termed the “Adverse phenotype” and was associated with the worst clin-

ical outcomes. Lactate dehydrogenase (LDH), absolute neutrophil count, D-dimer, aspartate

aminotransferase (AST), and C-reactive protein (CRP) were most influential in phenotype I

determination. The strong association of red cell distribution width (RDW) with phenotype I

was interesting. RDW was strongly associated with genetic age which is hypothesized to be a

Table 1. (Continued)

Phenotype I Phenotype II Phenotype III P-value

N = 236 N = 613 N = 173

SBP (mean (SD)) 133.29 (27.14) 132.46 (23.54) 134.10 (26.26) 0.72

Total protein 6.5 (5.9–7.0) 6.7 (6.20–7.2) 6.6 (6.2–7.1) 0.01

Red cell distribution width 14.1 (13.2–15.4) 13.5 (12.9–14.7) 13.5 (12.8–14.6) <0.001

Mean corpuscular volume 90.0 (86.0–94.0) 89.0 (85.0–93.0) 92.0 (88.0–95.3) <0.001

Alkaline phosphatase 88.0 (67.5–129.0) 71.0 (55.5–92.0) 72.0 (58.-88.0) <0.001

Calcium 8.10 (7.6–8.5) 8.30 (8.0–8.7) 8.40 (8.1–8.9) <0.001

Anion gap 9.0 (7.0–12.0) 8.0 (6.0–10.0) 7.0 (6.0–9.0) <0.001

CO2 23.25 (21.0–26.0) 24.0 (22.0–27.0) 25.0 (23.0–27.8) <0.001

Hematocrit 36.40 (32.3–40.2) 37.60 (33.6–41.1) 38.45 (35.7–41.5) <0.001

Aspartate aminotransferase 55.0 (38.0–95.0) 35.0 (24.0–53.0) 29.0 (20.0–44.0) <0.001

Glucose 122.0 (101.0–165.0) 112.0 (96.0–149.5) 104.0 (91.0–126.5) <0.001

Absolute monocyte count 0.40 (0.3–0.8) 0.40 (0.3–0.6) 0.50 (0.3–0.7) <0.001

Platelets 206.0 (160.0–290.0) 190.0 (149.0–243.0) 196.0 (142.5–247.5) 0.01

Albumin 2.40 (2.0–2.7) 2.80 (2.5–3.1) 3.10 (2.8–3.4) <0.001

Bilirubin 0.70 (0.4–1.1) 0.40 (0.3–0.6) 0.40 (0.3–0.6) <0.001

INR 1.11 (1.03–1.28) 1.06 (0.99–1.17) 1.08 (0.98–1.21) 0.001

Lactate dehydrogenase 460.5 (380.0–562.8) 308.0 (249.0–394.0) 231.0 (180.0–293.5) <0.001

Potassium 4.0 (3.6–4.3) 3.80 (3.6–4.2) 3.80 (3.6–4.2) 0.101

Sodium 137.5 (134.0–141.0) 137.0 (135.0–139.0) 138.0 (136.0–140.0) 0.003

D-dimer 3.08 (1.71–5.57) 0.87 (0.59–1.27) 0.60 (0.36–1.05) <0.001

Hemoglobin 11.90 (10.5–13.1) 12.20 (10.7–13.5) 12.40 (11.3–13.7) 0.01

C-reactive protein 157.0 (102.0–244.0) 89.0 (55.0–134.8) 12.0 (5.0–20.0) <0.001

Creatinine 1.06 (0.77–1.62) 0.84 (0.69–1.13) 0.80 (0.68–1.03) <0.001

Absolute neutrophil count 8.05 (5.75–11.42) 4.20 (3.0–6.0) 2.90 (1.8–4.3) <0.001

Absolute lymphocyte count 0.90 (0.6–1.3) 0.90 (0.7–1.3) 1.30 (0.9–1.7) <0.001

WBC 8.74 (5.68–15.42) 4.50 (3.0–6.71) 2.36 (1.31–3.77) <0.001

Gamma Gap 9.80 (7.2–13.2) 5.90 (4.3–7.6) 4.90 (3.9–7.3) <0.001

Table 1 presents summary statistics of patient demographics, comorbidities, in-hospital complications, clinical outcomes, and admission vitals and labs for each clinical

phenotype (I, II, III). Admissions vitals and labs were used to create the phenotypes. Categorical variables are presented as count (%). Continuous variables are

presented as median (interquartile range) unless otherwise specified.

Abbreviations: ADI, area deprivation index; BMI, body mass index; INR, internal normalized ratio of prothrombin time; ECMO, Extracorporeal membrane

oxygenation; ICU, Intensive Care Unit

https://doi.org/10.1371/journal.pone.0248956.t001
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risk factor in COVID-19 [30]. As people age, variability in red blood cell volumes increases.

Similarly, Gamma Gap, a marker of immunoglobulin levels, was elevated in all three pheno-

types (median > 3.5) [32]. However, patients with clinical phenotype I were noted to have the

largest increase in Gamma Gap. In this scenario elevated Gamma Gap was likely an indicator

of systemic inflammation and has been associated in other inflammatory disease processes

with prognosis. Other groups have previously reported on the importance of the Absolute

Neutrophil to Absolute Lymphocyte count, here we noted that ANC/ALC was lowest for phe-

notype III and highest for phenotype I, in line with previous reports. Patients with cardiac,

hematologic, and renal comorbidities were most prone to develop phenotype I. Phenotype I

was associated with numerous complications (hematologic, hepatic, metabolic, renal, respira-

tory, and infectious) when compared to other phenotypes. It is interesting to note despite a

higher rate of baseline cardiac comorbidities phenotype I was not associated with increased

cardiac complications. Beyond the pathophysiologic differences, it is important to note the

higher proportion of non-White and non-English speaking patients in phenotype I. Moreover,

Fig 3. Relative risk ratio of comorbidities to clinical phenotypes. Relative Risk ratios of comorbidities of phenotypes I and II compared to the reference group

phenotype III.

https://doi.org/10.1371/journal.pone.0248956.g003
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socioeconomic status was similar across all phenotypes, which has been proposed to be a

driver of disparate outcomes in healthcare. These findings are consistent with a recent study

conducted across this populations of patients which found COVID-19 severity to be associated

with minority populations and non-English speaking patients, independent of socioeconomic

status. Given race/ethnicity and primary language spoken are social constructs and traits,

respectively, which are not biologically grounded; these results require further investigation as

to why these populations are at higher risk of developing phenotype I through mediation anal-

ysis of external factors (as opposed to these populations being an isolated cause of developing

an unfavorable phenotype).

Phenotype III was associated with the best clinical outcomes and can be termed the “Favor-

able Phenotype”. Surprisingly, patients with phenotype III had a very high rate of respiratory

comorbidities and the best clinical outcomes. What is most surprising is despite the lowest

complication rate and mortality, this phenotype was associated with a greater than 10% rate of

hospital readmission. Long-term sequelae from the critically ill remains an important target

for patient centered improvements in care given the increasing loss of functional status among

ICU patients predating the pandemic. It is possible that patients pre-existing respiratory

comorbidities predisposed them to longer term sequelae which may have resulted in this read-

mission rate, although additional studies are needed to better elucidate these findings, specifi-

cally controlling for differences in survival. Patients with respiratory comorbidities such as

asthma and COPD routinely use medications which may be protective in SARS-CoV-2 patho-

genesis which may explain this protective effect. For example, our group has previously identi-

fied reduced mortality in COVID-19 for patients with asthma treated with beta2-agonists [16].

Patients with phenotype III were more likely to use inhaled steroids, nasal fluticasone, albute-

rol, and antihistamines.

Clinical phenotypes are critical during a pandemic when time and resources are scarce.

Phenotypes not only enable the identification of risk factors; they also provide essential insight

Table 2. Association of clinical phenotype with clinical outcome.

In- and Out- of Hospital Mortality (Cox PH) HR 95% CI P value

Mortality <0.001 (LR test)

Phenotype I 7.30 3.11–17.17 <0.001

Phenotype II 2.57 1.10–6.00 0.03

Binary Outcomes (Logistic Regression) OR 95% CI P value

ICU Admission <0.001 (LR test)

Phenotype I 7.88 4.65–13.37 <0.001

Phenotype II 2.32 1.46–3.68 <0.001

Mechanical Ventilation <0.001 (LR test)

Phenotype I 25.59 7.69–85.17 <0.001

Phenotype II 7.45 2.27–24.43 <0.001

Count Outcome (Binomial Regression) IRR 95% CI P value

Hospital LOS� <0.001 (LR test)

Phenotype I 1.74 1.45–2.10 <0.001

Phenotype II 1.22 1.05–1.43 0.01

Abbreviations: PH, proportional hazards; HR, hazard ratio; CI, confidence interval; OR, odds ratio; ICU, intensive

care unit; IRR, incidence rate ratio; LOS, length of stay; LR, likelihood ratio.

Reference group for all models is Phenotype III. All models adjusted for sex, race/ethnicity, and Elixhauser

Comorbidity Index.

� LOS model only included patients that survived.

https://doi.org/10.1371/journal.pone.0248956.t002
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towards the high yield follow up investigations. For example, while noting the respiratory asso-

ciations with phenotype III (favorable phenotype) is interesting, the more beneficial take away

includes further investigations towards how these underlying conditions and/or their medica-

tions may mitigate illness severity. Lastly, by phenotyping patients affected by COVID-19; we

set the foundation to begin comparing if these phenotypes are unique to SARS-CoV-2 or if

similarities exist elsewhere.

As the attention paid to personalized medicine accelerates; these studies are just the begin-

ning. Future work will expand upon these phenotypes with the hope that they can assist in 1)

identifying those at risk of poor outcomes, 2) precisely treating each phenotype (which may

not be uniform across all phenotypes), and 3) preventing further complications in those phe-

notypes at higher risk. In addition, a deeper investigation into clinical phenotypes and associ-

ated genomic, transcriptomic, and proteomic is needed. The ability to classify patients into

clinical phenotypes can facilitate the linkage of—omics data to better understand SARS-CoV-2

pathogenesis and natural history. Work is already being done to identify genetic host factors

that may play a role in determining not only susceptibility to the virus, but also the clinical tra-

jectory when infection does occur. Understanding COVID-19 severity, its biomarkers, and

risk factors is paramount during the COVID-19 pandemic.

Our study has several limitations, including that this is a retrospective study and therefore

results may be biased or subject to residual confounding. Second, patients were followed for

variable lengths of time. Patients that were admitted in March 2020 thus had approximately 5

months of follow-up whereas patients admitted in late August had limited time. We accounted

for this by conducting a Cox proportional hazard analysis when analyzing in- and out- of hos-

pital mortality. Additionally, when the data were pulled, only 54 patients (5%) remained hospi-

talized. While most patients developed complications within their first 2 weeks of hospital

admission, it is possible that they may still develop clinical complications which is not reflected

in this analysis. Furthermore, our analysis was completed on hospitalized patients. It is impor-

tant to recognize that our results are restricted to those who required hospitalization. Our data

cannot be extrapolated to those with mild COVID-19 (i.e. not requiring hospitalization).

Conclusion

In this retrospective analysis of patients with COVID-19, three clinical phenotypes were iden-

tified reflecting adverse, moderate, and favorable outcomes. Patients from each phenotype pre-

sented with different comorbidities and developed different complications. Our results suggest

that phenotype-specific medical care of COVID-19 may improve outcomes. Future research is

urgently needed to determine the utility of these phenotypes in clinical practice and trial

design.

Supporting information

S1 Fig. Consensus cumulative distribution functions. Cumulative distribution functions

(CDF) for a randomly selected imputed dataset are shown. A range of phenotypes (2–7) were

considered, and the optimal choice of phenotypes is 3.

(TIF)

S2 Fig. Delta area. The relative change in delta area under the cumulative distribution func-

tion is shown for the range of phenotypes (k = 2–7) for a randomly selected imputed dataset.

The optimal choice of phenotypes is 3. Abbreviations: CDF (cumulative distribution func-

tion).

(TIF)
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S3 Fig. Consensus matrix with 3 clusters. A consensus matrix heatmap is shown for a randomly

selected imputed dataset clustered into 3 phenotypes. The heatmap allows visualization of consen-

sus cluster assignments to evaluate cluster stability. Darker shades of green indicate higher stability.

(TIF)

S4 Fig. Consensus matrix with 4 clusters. A consensus matrix heatmap is shown for a ran-

domly selected imputed dataset clustered into 4 phenotypes. The heatmap allows visualization

of consensus cluster assignments to evaluate cluster stability. Darker shades of green indicate

higher stability. The choice of 4 clusters shows less stability than 3 clusters (see S3 Fig).

(TIF)

S5 Fig. Cumulative proportion of variance explained. The proportion of variance explained

by each principal component is summed over all principal components. For example, PC1 and

PC2 cumulatively explain 20% of the variation in the dataset. Abbreviations: PC1 (principal

component 1); PC2 (principal component 2).

(TIF)

S6 Fig. Contribution of variables to PC1. The contributions of each of the 33 variables used

in the clustering to principal component 1 are shown. The red line marks the expected average

contribution of each variable if the contributions of the variables were uniform across the data-

set. Variables contributing most to the observed pattern in PC1 are D-dimer and albumin.

Abbreviations: PC1 (principal component 1); Abs_Nphil_Ct (absolute neutrophil count);

LDH (lactate dehydrogenase); CRP (C-reactive protein); WBC (white blood cell count); HCT

(hematocrit); HGB (hemoglobin); Tbili (total bilirubin); RDW (red cell distribution width);

AST (aspartate aminotransferase); Alk_phos (alkaline phosphatase); RR (respiratory rate); CA

(calcium); TP (total protein); INR (internal normalized ratio of prothrombin time); CO2 (car-

bon dioxide); K (potassium); O2SAT (oxygen saturation); BMI (body mass index); PLT (plate-

let); PP (pulse pressure); Na (sodium); SBP (systolic blood pressure); Abs_mono_ct (absolute

monocyte count); MCV (mean corpuscular volume).

(TIF)

S7 Fig. Comorbidities by phenotype. Chord diagram illustrates the prevalence of comorbidi-

ties (% observed) for the three clinical phenotypes.

(TIF)

S8 Fig. Complications by phenotype. Chord diagram illustrates the prevalence of complica-

tions (% observed) for the three clinical phenotypes.

(TIF)

S9 Fig. Clinical outcomes by phenotype. Chord diagram illustrates the prevalence of clinical

outcomes (% observed) for the three clinical phenotypes. Abbreviations: ICU (intensive care

unit); Vent (mechanical ventilation); Readmit (readmission to hospital or ICU); ECMO (extra-

corporeal membrane oxygenation).

(TIF)

S1 Table. Categories of comorbidities and ICD 10 codes used.

(PDF)

S2 Table. List of complications contributing to each complication category.

(PDF)

S3 Table. Association of clinical phenotype with in-hospital complications.

(PDF)
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S4 Table.

(PDF)

S5 Table. Home medications and hospital day 5 laboratory values of hospitalized COVID-

19 patients with clinical phenotypes I, II, and III.

(PDF)

S1 File.
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