28 research outputs found

    Life in harsh environments : carabid and spider trait types and functional diversity on a debris-covered glacier and along its foreland

    Get PDF
    1. Patterns of species richness and species assemblage composition of ground-dwelling arthropods in primary successions along glacier forelands are traditionally described using a taxonomic approach. On the other hand, the functional trait approach could ensure a better characterisation of their colonisation strategies in these types of habitat. 2. The functional trait approach was applied to investigate patterns of functional diversity and life-history traits of ground beetles and spiders on an alpine debris-covered glacier and along its forefield in order to describe their colonisation strategies. 3. Ground beetles and spiders were sampled at different successional stages, representing five stages of deglaciation. 4. The results show that the studied glacier hosts ground beetle and spider assemblages that are mainly characterised by the following traits: walking colonisers, ground hunters and small-sized species. These traits are typical of species living in cold, wet, and gravelly habitats. The diversity of functional traits in spiders increased along the succession, and in both carabids and spiders, life-history traits follow the \u2018addition and persistence model\u2019. Accordingly, there is no turnover but there is an addition of new traits and a variation in their proportion within each species assemblage along the succession. The distribution of ground beetles and spiders along the glacier foreland and on the glacier seems to be driven by dispersal ability and foraging strategy. 5. The proposed functional approach improves knowledge of the adaptive strategies of ground-dwelling arthropods colonising glacier surfaces and recently deglaciated terrains, which represent landforms quickly changing due to global warming

    Lightweight and efficient convolutional neural networks for recognition of dolphin dorsal fins

    No full text
    The study of cetaceans is of vital importance to infer biological information useful to drive sustainable action plans aimed at preserving the marine environment and its biodiversity. In a recent study, we developed a novel algorithm for the detection of dorsal fins in the context of a fully automated pipeline for the photo-identification of Risso's dolphins. A lightweight convolutional neural network (CNN) architecture was proposed to recognize fins among cropped images, filtering the inputs for the photo-identification algorithm. In this paper, we compare the performances of that custom CNN to another extremely efficient architecture: Shufflenet. Training an efficient classifier is a key effort to speed up the first part of the photo-identification pipeline, enabling the feasibility of large scale ecological studies. The experiment confirms that both architectures provide a robust feature extraction capability for the problem in hand, even with a significantly smaller number of parameters with respect to other popular state-of-the-art CNNs

    New Frontiers in Sepsis-Induced Acute Kidney Injury and Blood Purification Therapies: The Role of Polymethylmethacrylate Membrane Hemofilter

    No full text
    Acute kidney injury (AKI) is a common consequence of sepsis with a mortality rate of up to 40%. The pathogenesis of septic AKI is complex and involves several mechanisms leading to exacerbated inflammatory response associated with renal injury. A large body of evidence suggests that inflammation is tightly linked to AKI through bidirectional interaction between renal and immune cells. Preclinical data from our and other laboratories have identified in complement system activation a crucial mediator of AKI. Partial recovery following AKI could lead to long-term consequences that predispose to chronic dysfunction and may also accelerate the progression of preexisting chronic kidney disease. Recent findings have revealed striking morphological and functional changes in renal parenchymal cells induced by mitochondrial dysfunction, cell cycle arrest via the activation of signaling pathways involved in aging process, microvascular rarefaction, and early fibrosis. Although major advances have been made in our understanding of the pathophysiology of AKI, there are no available preventive and therapeutic strategies in this field. The identification of ideal clinical biomarkers for AKI enables prompt and effective therapeutic strategy that could prevent the progression of renal injury and promote repair process. Therefore, the use of novel biomarkers associated with clinical and functional criteria could provide early interventions and better outcome. Several new drugs for AKI are currently being investigated; however, the complexity of this disease might explain the failure of pharmacological intervention targeting just one of the many systems involved. The hypothesis that blood purification could improve the outcome of septic AKI has attracted much attention. New relevant findings on the role of polymethylmethacrylate-based continuous veno-venous hemofiltration in septic AKI have been reported. Herein, we provide a comprehensive literature review on advances in the pathophysiology of septic AKI and potential therapeutic approaches in this field

    Data from: Resistance of plant–plant networks to biodiversity loss and secondary extinctions following simulated environmental changes

    No full text
    1. Plant interactions are fundamental processes for structuring plant communities and are an important mechanism governing the response of plant species and communities to environmental changes. Thus, understanding the role played by the interaction network in modulating the impact of environmental changes on plant community composition and diversity is crucial. Here, we aimed to develop a new analytical and conceptual framework to evaluate the responses of plant communities to environmental changes. 2. This framework uses functional traits as sensitivity measures for simulated environmental changes and assesses the consequences of microhabitat loss. We show here its application to an alpine plant community where we recorded functional traits (specific leaf area [SLA] and leaf dry matter content [LDMC]) of all plants associated with three foundation species or the surrounding open areas. We then simulated primary species loss based on different scenarios of environmental change and explored community persistence to the loss of foundation species. 3. Generally, plant community responses differed among environmental change scenarios. In a scenario of increasing drought alone (i.e. species with lower LDMC were lost first) or increasing drought with increasing temperature (i.e. species with lower LDMC and higher SLA were lost first), the plant community resisted because drought-tolerant foundation species tolerated those deteriorating conditions. However, in a scenario with increasing nitrogen input (i.e. species having lower SLA were lost earlier), foundation species accelerated species loss due to their early primary extinctions and the corresponding secondary extinctions of species associated to their microhabitat. 4. The resistance of a plant community depends on the driver of environmental change, meaning that the prediction of the fate of this system is depending on the knowledge of the main driver of environmental change. Our framework provides a mechanistic understanding of an ecosystem response to such environmental changes thanks to the integration of biology-informed criteria of species sensitivities to environmental factors into a network of interacting species

    Combined color semantics and deep learning for the automatic detection of dolphin dorsal fins

    No full text
    Photo-identification is a widely used non-invasive technique in biological studies for understanding if a specimen has been seen multiple times only relying on specific unique visual characteristics. This information is essential to infer knowledge about the spatial distribution, site fidelity, abundance or habitat use of a species. Today there is a large demand for algorithms that can help domain experts in the analysis of large image datasets. For this reason, it is straightforward that the problem of identify and crop the relevant portion of an image is not negligible in any photo-identification pipeline. This paper approaches the problem of automatically cropping cetaceans images with a hybrid technique based on domain analysis and deep learning. Domain knowledge is applied for proposing relevant regions with the aim of highlighting the dorsal fins, then a binary classification of fin vs. no-fin is performed by a convolutional neural network. Results obtained on real images demonstrate the feasibility of the proposed approach in the automated process of large datasets of Risso’s dolphins photos, enabling its use on more complex large scale studies. Moreover, the results of this study suggest to extend this methodology to biological investigations of different species

    Early social isolation differentially affects the glucocorticoid receptor system and alcohol-seeking behavior in male and female Marchigian Sardinian alcohol-preferring rats

    Get PDF
    Adverse early life experiences during postnatal development can evoke long-lasting neurobiological changes in stress systems, thereby affecting subsequent behaviors including propensity to develop alcohol use disorder. Here, we exposed genetically selected male and female Marchigian Sardinian alcohol-preferring (msP) and Wistar rats to mild, repeated social deprivation from postnatal day 14 (PND14) to PND21 and investigated the effect of the early social isolation (ESI) on the glucocorticoid receptor (GR) system and on the propensity to drink and seek alcohol in adulthood. We found that ESI resulted in higher levels of GR gene and protein expression in the prefrontal cortex (PFC) in male but not female msP rats. In female Wistars, ESI resulted in significant downregulation of Nr3c1 mRNA levels and lower GR protein levels. In male and female msP rats, plasma corticosterone levels on PND35 were similar and unaffected by ESI. Wistar females exhibited higher levels of corticosterone compared with males, independently from ESI. In alcohol self-administration experiments we found that the pharmacological stressor yohimbine (0.0, 0.312, 0.625, and 1.25 mg/kg) increased alcohol self-administration in both rat lines, regardless of ESI. After extinction, 0.625 mg/kg yohimbine significantly reinstated alcohol seeking in female rats only. ESI enhanced reinstatement in female msP rats. Overall, the present results indicate that repeated social deprivation during the third week of postnatal life affects GR expression in a strain- and sex-dependent manner: such effect may contribute, at least partially, to the heightened sensitivity of female msP rats to the effects of yohimbine-induced alcohol seeking

    Feedback effects between plant and flower-visiting insect communities along a primary succession gradient

    No full text
    Primary successions of glacier forelands are unique model systems to investigate community dynamics and assembly processes. However, successional changes of plant and insect communities have been mainly analysed separately. Therefore, changes in plant–insect interactions along successional gradients on glacier forelands remain unknown, despite their relevance to ecosystem functioning.This study assessed how successional changes of the vegetation influenced the composition of the flower-visiting insect assemblages of two plant species, Leucanthemopsis alpina (L.) Heyw. and Saxifraga bryoides L., selected as the only two insect-pollinated species occurring along the whole succession. In addition, we investigated the links between reproductive output of these plants and pollinator abundance through experimental exclusion of pollinators Plant community structure changed along the succession, affecting the distribution and the abundance of insects via idiosyncratic responses of different insect functional groups. L. alpina interacted with ubiquitously distributed pollinators, while S. bryoides pollinators were positively associated with insect-pollinated plant species density and S. bryoides abundance. With succession proceeding, insect assemblages became more functionally diverse, with the abundance of parasitoids, predators and opportunists positively related to an increase in plant cover and diversity.The reproductive output of both plant species varied among successional stages. Contrary to our expectation, the obligate insect-pollinated L. alpina showed a reproductive output rather independent from pollinator abundance, while the reproductive output of the self-fertile S. bryoides seemed linked to pollinator abundance. Observing ecological interactions and using functional traits, we provided a mechanistic understanding of community assembly processes along a successional gradient. Plant community diversity and cover likely influenced insect community assembly through bottom-up effects. In turn, pollinators regulate plant reproductive output through top-down control. We emphasise that dynamics of alpine plant and insect communities may be structured by biotic interactions and feedback processes, rather than only be influenced by harsh abiotic conditions and stochastic events

    An experimental approach to assessing the impact of ecosystem engineers on biodiversity and ecosystem functions

    No full text
    Plants acting as ecosystem engineers create habitats and facilitate biodiversity maintenance within plant communities. Furthermore, biodiversity research has demonstrated that plant diversity enhances the productivity and functioning of ecosystems. However, these two fields of research developed in parallel and independent from one another, with the consequence that little is known about the role of ecosystem engineers in the relationship between biodiversity and ecosystem functioning across trophic levels. Here, we present an experimental framework to study this relationship. We combine facilitation by plants acting as ecosystem engineers with plant–insect interaction analysis and variance partitioning of biodiversity effects. We present a case-study experiment in which facilitation by a cushion-plant species and a dwarf-shrub species as ecosystem engineers increases positive effects of plant functional diversity (ecosystem engineers and associated plants) on ecosystem functioning (flower visitation rate). The experiment, conducted in the field during a single alpine flowering season, included the following treatments: (1) removal of plant species associated with ecosystem engineers, (2) exclusion (covering) of ecosystem engineer flowers, and (3) control, i.e., natural patches of ecosystem engineers and associated plant species. We found both positive and negative associational effects between plants depending on ecosystem engineer identity, indicating both pollination facilitation and interference. In both cases, patches supported by ecosystem engineers increased phylogenetic and functional diversity of flower visitors. Furthermore, complementarity effects between engineers and associated plants were positive for flower visitation rates. Our study reveals that plant facilitation can enhance the strength of biodiversity–ecosystem functioning relationships, with complementarity between plants for attracting more and diverse flower visitors being the likely driver. A potential mechanism is that synergy and complementarity between engineers and associated plants increase attractiveness for shared visitors and widen pollination niches. In synthesis, facilitation among plants can scale up to a full network, supporting ecosystem functioning both directly via microhabitat amelioration and indirectly via diversity effects
    corecore