12 research outputs found

    Population Pharmacokinetics and Exposure–Response Analysis for the Phase 3 COSMIC-311 Trial of Cabozantinib for Radioiodine-Refractory Differentiated Thyroid Cancer

    Get PDF
    Background and Objective In the USA, cabozantinib was approved for the treatment of patients aged ≥ 12 years with radioiodine-refractory differentiated thyroid cancer (DTC) who progressed on prior vascular endothelial growth factor (VEGFR)-targeted therapy based on the Phase 3 COSMIC-311 trial, which evaluated cabozantinib 60 mg/day versus placebo. Approved dosing is 60 mg/day for adults and for pediatric patients aged ≥ 12 years with body surface area (BSA) ≥ 1.2 m2, and 40 mg/day for pediatric patients aged ≥ 12 years with BSA \u3c 1.2 m2. This report describes a population pharmacokinetic (PopPK) and exposure–response analysis of COSMIC-311. Methods A PopPK model was developed using concentration-time data from COSMIC-311 and 6 other cabozantinib studies. The final (full) PopPK model was used to simulate the effect of sex, body weight, race, and patient population. For exposure–response analysis, derived datasets from COSMIC-311 were constructed for time-to-event analyses of progression-free survival (PFS) and safety endpoints. Results The PopPK analysis included 4746 cabozantinib PK samples from 1745 patients and healthy volunteers. Body weight had minimal impact on cabozantinib exposure but increasing body weight was associated with increased apparent volume of distribution. Based on model-based simulation, adolescents \u3c 40 kg had higher maximum plasma concentration at steady state of cabozantinib 60 mg/day compared to adults. Allometric scaling simulation in adolescents \u3c 40 kg demonstrated higher exposure with 60 mg/day relative to adults receiving the same dose, while exposure with 40 mg/day in adolescents \u3c 40 kg was similar to 60 mg/day in adults. The exposure–response analysis included 115 patients. There was no clear relationship between PFS or dose modification and cabozantinib exposure. A statistically significant relationship was demonstrated for cabozantinib exposure and hypertension (Grade ≥ 3) and fatigue/asthenia (Grade ≥ 3). Conclusions These results support the dosing strategy implemented in COSMIC-311 and the BSA-based label recommendations for adolescents. The cabozantinib dose should be reduced to manage adverse events as indicated

    Molecular Mechanism of HER2 Rapid Internalization and Redirected Trafficking Induced by Anti-HER2 Biparatopic Antibody

    No full text
    Amplification and overexpression of HER2 (human epidermal growth factor receptor 2), an ErbB2 receptor tyrosine kinase, have been implicated in human cancer and metastasis. A bispecific tetravalent anti-HER2 antibody (anti-HER2-Bs), targeting two non-overlapping epitopes on HER2 in domain IV (trastuzumab) and domain II (39S), has been reported to induce rapid internalization and efficient degradation of HER2 receptors. In this study, we investigated the molecular mechanism of this antibody-induced rapid HER2 internalization and intracellular trafficking. Using quantitative fluorescent imaging, we compared the internalization kinetics of anti-HER2-Bs and its parental arm antibodies, alone or in combinations and under various internalization-promoting conditions. The results demonstrated that concurrent engagement of both epitopes was necessary for rapid anti-HER2-Bs internalization. Cellular uptake of anti-HER2-Bs and parental arm antibodies occurred via clathrin-dependent endocytosis; however, inside the cells antibodies directed different trafficking pathways. Trastuzumab dissociated from HER2 in 2 h, enabling the receptor to recycle, whereas anti-HER2-Bs stayed associated with the receptor throughout the entire endocytic pathway, promoting receptor ubiquitination, trafficking to the lysosomes, and efficient degradation. Consistent with routing HER2 to degradation, anti-HER2-Bs significantly reduced HER2 shedding and altered its exosomal export. Collectively, these results enable a better understanding of the mechanism of action of anti-Her2-Bs and can guide the rational design of anti-HER2 therapeutics as well as other bispecific molecules
    corecore