1,163 research outputs found

    Observations of 20 millisecond pulsars in 47 Tucanae at 20 cm

    Get PDF
    We have used a new observing system on the Parkes radio telescope to carry out a series of pulsar observations of the globular cluster 47 Tucanae at 20-cm wavelength. We detected all 11 previously known pulsars, and have discovered nine others, all of which are millisecond pulsars in binary systems. We have searched the data for relatively short orbital period systems, and found one pulsar with an orbital period of 96 min, the shortest of any known radio pulsar. The increased rate of detections with the new system resulted in improved estimates of the flux density of the previously known pulsars, determination of the orbital parameters of one of them, and a coherent timing solution for another one. Five of the pulsars now known in 47 Tucanae have orbital periods of a few hours and implied companion masses of only ~ 0.03 Msun. Two of these are eclipsed at some orbital phases, while three are seen at all phases at 20 cm but not always at lower frequencies. Four and possibly six of the other binary systems have longer orbital periods and companion masses ~ 0.2 Msun, with at least two of them having relatively large orbital eccentricities. All 20 pulsars have rotation periods in the range 2-8 ms.Comment: 15 pages, 6 embedded EPS figures, to be published in The Astrophysical Journa

    A periodically active pulsar giving insight into magnetospheric physics

    Get PDF
    PSR B1931+24 (J1933+2421) behaves as an ordinary isolated radio pulsar during active phases that are 5-10 days long. However, the radio emission switches off in less than 10 seconds and remains undetectable for the next 25-35 days, then it switches on again. This pattern repeats quasi-periodically. The origin of this behaviour is unclear. Even more remarkably, the pulsar rotation slows down 50% faster when it is on than when it is off. This indicates a massive increase in magnetospheric currents when the pulsar switches on, proving that pulsar wind plays a substantial role in pulsar spin-down. This allows us, for the first time, to estimate the currents in a pulsar magnetospheric during the occurrence of radio emission.Comment: 12 pages, 2 figure

    Are Supershells Powered by Multiple Supernovae? Modeling the Radio Pulsar Population Produced by OB Associations

    Full text link
    Traditional searches for radio pulsars have targeted individual small regions such as supernova remnants or globular clusters, or have covered large contiguous regions of the sky. None of these searches has been specifically directed towards giant supershells, some of which are likely to have been produced by multiple supernova (SN) explosions from an OB association. Here we perform a Montecarlo simulation of the pulsar population associated with supershells powered by multiple SNe. We predict that several tens of radio pulsars could be detected with current instruments associated with the largest Galactic supershells (with kinetic energies >~ 10^{53} ergs), and a few pulsars with the smaller ones. We test these predictions for some of the supershells which lie in regions covered by past pulsar surveys. For the smaller supershells, our results are consistent with the few detected pulsars per bubble. For the giant supershell GSH 242-03+37, we find the multiple SN hypothesis inconsistent with current data at the 95% level. We stress the importance of undertaking deep pulsar surveys in correlation with supershells. Failure to detect any pulsar enhancement in the largest of them would put serious constraints on the multiple SN origin for them. Conversely, the discovery of the pulsar population associated with a supershell would allow a different/independent approach to the study of pulsar properties.Comment: accepted to ApJ; 17 pages, 2 figures, 1 tabl

    Long-Term Effects of Alternative Group Selection Harvesting Designs on Stand Production

    Get PDF
    Interest in group selection harvesting has increased in recent years because of limitations associated with both clearcutting and single-tree selection. Field data have suggested that group selection openings can have higher production rates than single-tree gaps, but whether this translates into higher production rates at the stand level is not clear. We used CANOPY, a crown-based northern hardwoods model calibrated with data from uneven-aged and even-aged stands, to simulate sustainable harvest volumes of a number of different group selection approaches over 300 years, and also compared results with those from single-tree selection and clearcutting. When a combination of single-tree and group selection was used with groups making up 3% of the stand area per cutting cycle, net harvestable production rates were similar to those of single-tree selection, and opening size (100-4000m2) had little effect on production rates. As the percentage of the matrix in groups increased from 1 to 9% per cutting cycle, production actually showed a small but consistent decline of about 6 to 7%. When group selection was used alone with no cutting between the groups, production rates varied considerably depending on opening size and rotation age. Small group selection (200 m2) had production rates similar to or slightly higher than single-tree selection, whereas 2000 m2 openings resulted in a production declines of 30 to 35%. Large patch sizes appear to have relatively low net production because of unsalvaged mortality. Similar trends were observed in unthinned even-aged stands compared to those thinned at 15-yr intervals. Although our results confirmed that trees in even-aged stands are more efficient producers than those in uneven-aged stands, there appear to be countervailing tendencies that reduce production rates in large single-cohort patches, including a lag time during the first few decades when production rates of merchantable volume in large openings are very low

    Timing the millisecond pulsars in 47 Tucanae

    Get PDF
    In the last 10 years 20 millisecond pulsars have been discovered in the globular cluster 47 Tucanae. Hitherto, only 3 of these had published timing solutions. Here we improve upon these 3 and present 12 new solutions. These measurements can be used to determine a variety of physical properties of the pulsars and of the cluster. The 15 pulsars have positions determined with typical uncertianties of only a few milliarcsec and they are all located within 1.2 arcmin of the cluster centre. We have also measured the proper motions of 5 of the pulsars, which are consistent with the proper motion of 47 Tuc based on Hipparcos data. The period derivatives measured for many of the pulsars are dominated by the dynamical effects of the cluster gravitational field, and are used to constrain the surface mass density of the cluster. All pulsars have characteristic ages T > 170 Myr and magnetic fields B < 2.4e9 Gauss, and the average T > 1 Gyr. We have measured the rate of advance of periastron for the binary pulsar J0024-7204H, implying a total system mass 1.4+-0.8 solar masses.Comment: 17 pages, 11 included figures, accepted for publication in MNRA

    A case-matched study of neurophysiological correlates to attention /working memory in people with somatic hypervigilance

    Get PDF
    Accepted 14 June 2016Somatic hypervigilance describes a clinical presentation in which people report more, and more intense, bodily sensations than is usual. Most explanations of somatic hypervigilance implicate altered information processing, but strong empirical data are lacking. Attention and working memory are critical for information processing, and we aimed to evaluate brain activity during attention/working memory tasks in people with and without somatic hypervigilance. Method: Data from 173 people with somatic hypervigilance and 173 controls matched for age, gender, handedness, and years of education were analyzed. Event-related potential (ERP) data, extracted from the continuous electroencephalograph recordings obtained during performance of the Auditory Oddball task, and the Two In A Row (TIAR) task, for N1, P2, N2, and P3, were used in the analysis. Between-group differences for P3 amplitude and N2 amplitude and latency were assessed with two-tailed independent t tests. Between-group differences for N1 and P2 amplitude and latency were assessed using mixed, repeated measures analyses of variance (ANOVAs) with group and Group × Site factors. Linear regression analysis investigated the relationship between anxiety and depression and any outcomes of significance. Results: People with somatic hypervigilance showed smaller P3 amplitudes—Auditory Oddball task: t(285) = 2.32, 95% confidence interval, CI [3.48, 4.47], p = .026, d = 0.27; Two-In-A-Row (TIAR) task: t(334) = 2.23, 95% CI [2.20; 3.95], p = .021, d = 0.24—than case-matched controls. N2 amplitude was also smaller in people with somatic hypervigilance—TIAR task: t(318) = 2.58, 95% CI [0.33, 2.47], p = .010, d = 0.29—than in case-matched controls. Neither depression nor anxiety was significantly associated with any outcome. Conclusion: People with somatic hypervigilance demonstrated an event-related potential response to attention/working memory tasks that is consistent with altered information processing.Carolyn Berryman, Vikki Wise, Tasha R. Stanton, Alexander McFarlane and G. Lorimer Mosele

    Pulsars in Globular Clusters with the SKA

    Get PDF
    Globular clusters are highly efficient radio pulsar factories. These pulsars can be used as precision probes of the clusters' structure, gas content, magnetic field, and formation history; some of them are also highly interesting in their own right because they probe exotic stellar evolution scenarios as well as the physics of dense matter, accretion, and gravity. Deep searches with SKA1-MID and SKA1-LOW will plausibly double to triple the known population. Such searches will only require one to a few tied-array beams, and can be done during early commissioning of the telescope - before an all-sky pulsar survey using hundreds to thousands of tied-array beams is feasible. With SKA2 it will be possible to observe most of the active radio pulsars within a large fraction of the Galactic globular clusters, an estimated population of 600 - 3700 observable pulsars (those beamed towards us). This rivals the total population of millisecond pulsars that can be found in the Galactic field; fully characterizing it will provide the best-possible physical laboratories as well as a rich dynamical history of the Galactic globular cluster system.Comment: 15 pages, 5 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)04

    Long-term observations of the pulsars in 47 Tucanae - II. Proper motions, accelerations and jerks

    Get PDF
    This paper is the second in a series where we report the results of the long-term timing of the millisecond pulsars (MSPs) in 47 Tucanae with the Parkes 64-m radio telescope. We obtain improved timing parameters that provide additional information for studies of the cluster dynamics: a) the pulsar proper motions yield an estimate of the proper motion of the cluster as a whole (μα=5.00±0.14masyr1\mu_{\alpha}\, = \, 5.00\, \pm \, 0.14\, \rm mas \, yr^{-1}, μδ=2.84±0.12masyr1\mu_{\delta}\, = \, -2.84\, \pm \, 0.12\, \rm mas \, yr^{-1}) and the motion of the pulsars relative to each other. b) We measure the second spin-period derivatives caused by the change of the pulsar line-of-sight accelerations; 47 Tuc H, U and possibly J are being affected by nearby objects. c) For ten binary systems we now measure changes in the orbital period caused by their acceleration in the gravitational field of the cluster. From all these measurements, we derive a cluster distance no smaller than \sim\,4.69 kpc and show that the characteristics of these MSPs are very similar to their counterparts in the Galactic disk. We find no evidence in favour of an intermediate mass black hole at the centre of the cluster. Finally, we describe the orbital behaviour of the four "black widow" systems. Two of them, 47 Tuc J and O, exhibit orbital variability similar to that observed in other such systems, while for 47 Tuc I and R the orbits seem to be remarkably stable. It appears, therefore, that not all "black widows" have unpredictable orbital behaviour.Comment: 21 pages in journal format, 9 figures, 4 tables, accepted for publication in MNRAS, several clarifications made and typos fixe

    A precise mass measurement of the intermediate-mass binary pulsar PSR J1802-2124

    Full text link
    PSR J1802-2124 is a 12.6-ms pulsar in a 16.8-hour binary orbit with a relatively massive white dwarf (WD) companion. These properties make it a member of the intermediate-mass class of binary pulsar (IMBP) systems. We have been timing this pulsar since its discovery in 2002. Concentrated observations at the Green Bank Telescope, augmented with data from the Parkes and Nancay observatories, have allowed us to determine the general relativistic Shapiro delay. This has yielded pulsar and white dwarf mass measurements of 1.24(11) and 0.78(4) solar masses (68% confidence), respectively. The low mass of the pulsar, the high mass of the WD companion, the short orbital period, and the pulsar spin period may be explained by the system having gone through a common-envelope phase in its evolution. We argue that selection effects may contribute to the relatively small number of known IMBPs.Comment: 9 pages, 4 figures, 3 tables, accepted for publication in the Astrophysical Journa
    corecore