416 research outputs found

    Genes and primary headaches: discovering new potential therapeutic targets

    Get PDF
    Genetic studies have clearly shown that primary headaches (migraine, tension-type headache and cluster headache) are multifactorial disorders characterized by a complex interaction between different genes and environmental factors. Genetic association studies have highlighted a potential role in the etiopathogenesis of these disorders for several genes related to vascular, neuronal and neuroendocrine functions. A potential role as a therapeutic target is now emerging for some of these genes. The main purpose of this review is to describe new advances in our knowledge regarding the role of MTHFR, KCNK18, TRPV1, TRPV3 and HCRTR genes in primary headache disorders. Involvement of these genes in primary headaches, as well as their potential role in the therapy of these disorders, will be discussed

    I Componenti azotati del latte della capra sarda

    Get PDF
    The Authors, in a study on the Sardinian goat milk, have found the following milk percentual composition: fats 5.02, nitrogen compounds 4.03, proteins 3.61, casein 2.86, soluble proteins 0.75, coagulable proteins 2.65, non coagulable proteins 0.96, non proteic compounds 0,42, urea 386 mg/kg, uric acid 35 mg/kg, creatinine 39 mg/kg

    Innate Lymphoid Cells: Expression of PD-1 and Other Checkpoints in Normal and Pathological Conditions

    Get PDF
    Innate lymphoid cells (ILCs) belong to a family of immune cells. Recently, ILCs have been classified into five different groups that mirror the function of adaptive T cell subsets counterparts. In particular, NK cells mirror CD8+ cytotoxic T cells while ILC1, ILC2, ILC3, and Lymphoid tissue inducer (LTi)-like cells reflect the function of CD4+T helper (Th) cells (Th1, Th2, and Th17 respectively). ILCs are involved in innate host defenses against pathogens and tumors, in lymphoid organogenesis, and in tissue remodeling/repair. In recent years, important molecular inducible checkpoints (PD-1, TIM3, and TIGIT) were shown to control/inactivate different immune cell types. The expression of many of these receptors has been detected on NK cells and subsets of tissue-resident ILCs in both physiological and pathological conditions, including cancer. In particular, it has been demonstrated that the interaction between PD-1+ immune cells and PD-L1/PD-L2+ tumor cells may compromise the anti-tumor effector function leading to tumor immune escape. However, while the effector function of NK cells in tumor is well-established, limited information exists on the other ILC subsets. We will summarize what is known to date on the expression and function of these checkpoint receptors on NK cells and ILCs, with a particular focus on the recent data that reveal an essential contribution of the blockade of PD-1 and TIGIT on NK cells to the immunotherapy of cancer. A better information regarding the presence and the function of different ILCs and of the inhibitory checkpoints in pathological conditions may offer important clues for the development of new immune therapeutic strategies

    Revealing the Therapeutic Potential of Botulinum Neurotoxin Type A in Counteracting Paralysis and Neuropathic Pain in Spinally Injured Mice

    Get PDF
    Botulinum neurotoxin type A (BoNT/A) is a major therapeutic agent that has been proven to be a successful treatment for different neurological disorders, with emerging novel therapeutic indications each year. BoNT/A exerts its action by blocking SNARE complex formation and vesicle release through the specific cleavage of SNAP-25 protein; the toxin is able to block the release of pro-inflammatory molecules for months after its administration. Here we demonstrate the extraordinary capacity of BoNT/A to neutralize the complete paralysis and pain insensitivity induced in a murine model of severe spinal cord injury (SCI). We show that the toxin, spinally administered within one hour from spinal trauma, exerts a long-lasting proteolytic action, up to 60 days after its administration, and induces a complete recovery of muscle and motor function. BoNT/A modulates SCI-induced neuroglia hyperreactivity, facilitating axonal restoration, and preventing secondary cells death and damage. Moreover, we demonstrate that BoNT/A affects SCI-induced neuropathic pain after moderate spinal contusion, confirming its anti-nociceptive action in this kind of pain, as well. Our results provide the intriguing and real possibility to identify in BoNT/A a therapeutic tool in counteracting SCI-induced detrimental effects. Because of the well-documented BoNT/A pharmacology, safety, and toxicity, these findings strongly encourage clinical translation

    Heterogeneity of NK Cells and Other Innate Lymphoid Cells in Human and Murine Decidua

    Get PDF
    Innate lymphoid cells (ILCs) represent a heterogeneous group of cells lacking genetically rearranged antigen receptors that derive from common lymphoid progenitors. Five major groups of ILCs have been defined based on their cytokine production pattern and developmental transcription factor requirements: namely, natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue-inducer (LTi) cells. ILC1s, ILC2s, and ILC3s mirror the corresponding T helper subsets (Th1, Th2, and Th17, respectively) and produce cytokines involved in defense against pathogens, lymphoid organogenesis, and tissue remodeling. During the first trimester of pregnancy, decidual tissues contain high proportion of decidual NK (dNK) cells, representing up to 50% of decidual lymphocytes, and ILC3s. They release peculiar cytokines and chemokines that contribute to successful pregnancy. Recent studies revealed that ILCs display a high degree of plasticity allowing their prompt adaptation to environmental changes. Decidual NK cells may derive from peripheral blood NK cells migrated when pregnancy establishes or from in situ differentiation of hematopoietic precursors. Previous studies showed that human and murine decidua contain dNK cells, tissue resident NK cells, and ILC3s, all characterized by unique phenotypic and functional properties, most likely induced by decidual microenvironment to favor the establishment and the maintenance of pregnancy. Thus, during the early phase of pregnancy, the simultaneous presence of different ILC subsets further underscores the complexity of the cellular components of decidual tissues as well as the role of decidual microenvironment in shaping the plasticity and the function of ILCs

    Human natural killer cells and other innate lymphoid cells in cancer: Friends or foes?

    Get PDF
    Innate lymphoid cells (ILC) including NK cells (cytotoxic) and the recently identified "helper" ILC1, ILC2 and ILC3, play an important role in innate defenses against pathogens. Notably, they mirror analogous T cell subsets, regarding the pattern of cytokine produced, while the timing of their intervention is few hours vs days required for T cell-mediated adaptive responses. On the other hand, the effectiveness of ILC in anti-tumor defenses is controversial. The relevance of NK cells in the control of tumor growth and metastasis has been well documented and they have been exploited in the therapy of high risk leukemia in the haploidentical hematopoietic stem cell transplantation setting. In contrast, the actual involvement of helper ILCs remains contradictory. Thus, while certain functional capabilities of ILC1 and ILC3 may favor anti-tumor responses, other functions could rather favor tumor growth, neo-angiogenesis, epithelial-mesenchymal transition and metastasis. In addition, ILC2, by secreting type-2 cytokines, are thought to induce a prevalent pro-tumorigenic effect. Finally, the function of both NK cells and helper ILCs may be inhibited by the tumor microenvironment, thus adding further complexity to the interplay between ILC and tumors

    Genetic variants in the NOTCH4 gene influence the clinical features of migraine

    Get PDF
    BACKGROUND: Recent studies suggested an important role for vascular factors in migraine etiopathogenesis. Notch4 belongs to a family of transmembrane receptors that play an important role in vascular development and maintenance. The aim of this study was to test the hypothesis that polymorphisms of the NOTCH4 gene would modify the occurrence and the clinical features of migraine. FINDINGS: Using a case–control strategy, we genotyped 239 migraine patients and 264 controls for three different non-synonymous polymorphisms (T320A, G835V, R1346P) of the NOTCH4 gene and for the (CTG) n-encoding polyleucine polymorphism in exon 1. Although the analyzed polymorphisms resulted not associated with migraine, the clinical characteristics of our patients were significantly influenced by the different NOTCH4 genotypes. Longer duration of disease and severity of neurovegetative symptoms during headache attacks were associated with the R1346P and G835V polymorphisms, respectively. In female patients, worsening of migraine symptoms at menarche was significantly correlated with T320A polymorphism. CONCLUSIONS: Our study shows that genetic variations within the NOTCH4 gene significantly modify the clinical characteristics of migraine and may have a role in disease pathogenesis

    NK cells and ILCs in tumor immunotherapy

    Get PDF
    Abstract Cells of the innate immunity play an important role in tumor immunotherapy. Thus, NK cells can control tumor growth and metastatic spread. Thanks to their strong cytolytic activity against tumors, different approaches have been developed for exploiting/harnessing their function in patients with leukemia or solid tumors. Pioneering trials were based on the adoptive transfer of autologous NK cell-enriched cell populations that were expanded in vitro and co-infused with IL-2. Although relevant results were obtained in patients with advanced melanoma, the effect was mostly limited to certain metastatic localizations, particularly to the lung. In addition, the severe IL-2-related toxicity and the preferential IL-2-induced expansion of Treg limited this type of approach. This limitation may be overcome by the use of IL-15, particularly of modified IL-15 molecules to improve its half-life and optimize the biological effects. Other approaches to harness NK cell function include stimulation via TLR, the use of bi- and tri-specific NK cell engagers (BiKE and TriKE) linking activating NK receptors (e.g. CD16) to tumor-associated antigens and even incorporating an IL-15 moiety (TriKE). As recently shown, in tumor patients, NK cells may also express inhibitory checkpoints, primarily PD-1. Accordingly, the therapeutic use of checkpoint inhibitors may unleash NK cells against PD-L1+ tumors. This effect may be predominant and crucial in tumors that have lost HLA cl-I expression, thus resulting "invisible" to T lymphocytes. Additional approaches in which NK cells may represent an important tool for cancer therapy, are to exploit the unique properties of the "adaptive" NK cells. These CD57+ NKG2C+ cells, despite their mature stage and a potent cytolytic activity, maintain a strong proliferating capacity. This property revealed to be crucial in hematopoietic stem cell transplantation (HSCT), particularly in the haplo-HSCT setting, to cure high-risk leukemias. T depleted haplo-HSCT (e.g. from one of the parents) allowed to save the life of thousands of patients lacking a HLA-compatible donor. In this setting, NK cells have been shown to play an essential role against leukemia cells and infections. Another major advance is represented by chimeric antigen receptor (CAR)-engineered NK cells. CAR-NK, different from CAR-T cells, may be obtained from allogeneic donors since they do not cause GvHD. Accordingly, they may represent "off-the-shelf" products to promptly treat tumor patients, with affordable costs. Different from NK cells, helper ILC (ILC1, ILC2 and ILC3), the innate counterpart of T helper cell subsets, remain rather ambiguous with respect to their anti-tumor activity. A possible exception is represented by a subset of ILC3: their frequency in peri-tumoral tissues in patients with NSCLC directly correlates with a better prognosis, possibly reflecting their ability to contribute to the organization of tertiary lymphoid structures, an important site of T cell-mediated anti-tumor responses. It is conceivable that innate immunity may significantly contribute to the major advances that immunotherapy has ensured and will continue to ensure to the cure of cancer

    PD-1 in human NK cells: evidence of cytoplasmic mRNA and protein expression

    Get PDF
    Under physiological conditions, PD-1/PD-L1 interactions regulate unwanted over-reactions of immune cells and contribute to maintain peripheral tolerance. However, in tumor microenvironment, this interaction may greatly compromise the immune-mediated anti-tumor activity. PD-1 + NK cells have been detected in high percentage in peripheral blood and ascitic fluid of ovarian carcinoma patients. To acquire information on PD-1 expression and physiology in human NK cells, we analyzed whether PD-1 mRNA and protein are present in resting, surface PD-1 12 , NK cells from healthy donors. Both different splicing isoforms of PD-1 mRNA and a cytoplasmic pool of PD-1 protein were detected. Similar results were obtained also from both in vitro-activated and tumor-associated NK cells. PD-1 mRNA and protein were higher in CD56 dim than in CD56 bright NK cells. Confocal microscopy analyses revealed that PD-1 protein is present in virtually all NK cells analyzed. The present findings are compatible with a rapid surface expression of PD-1 in NK cells in response to appropriate, still undefined, stimuli
    corecore