32 research outputs found

    Effects of wild boar grazing on the yield of summer truffle (Tuscany, Italy)

    Get PDF
    The research presented here seeks to describe the impact of wild boar to a natural truffle ground of Tuber aestivum Vittad. on Monte Amiata (Tuscany – Italy). Pedoclimatic analyses indicated that the selected area could be considered suitable for the truffle production. Then classification of the vegetation of a Quercus cerris forest was carried out exploring the possibility of the BACI (Before-After-Control-Impact) sampling design. Finally 10 plots were selected, half of which have been fenced. For the first time the impact of wild boar was evaluated by estimating the surface area turned over by its activity. Moreover in each plot the number and weight of summer truffles was performed every 10 days during the fruiting period (June-November 2006-2008). The hypothesis that the presence of Sus scrofa has a strong negative influence on truffle harvesting has been amply confirmed by the data presented here, given the large increase of fruiting bodies of the summer truffle collected in the fenced plots. Consequently the destructive behaviour of the wild boar imply not only an ecological but also an economic damage in areas in which non-wood forest products are an important source of income

    Biopolymers for Hard and Soft Engineered Tissues: Application in Odontoiatric and Plastic Surgery Field

    Get PDF
    The goal of modern dentistry and plastic surgery is to restore the patient to normal function, health and aesthetics, regardless of the disease or injury to the stomatognathic and cutaneous system respectively. In recent years tissue engineering and regenerative medicine have yielded many novel tissue replacements and implementation strategies. Scientific advances in biomaterials, stem cell isolation, growth and differentiation factors and biomimetic environments have created unique opportunities to fabricate tissues in the laboratory. Repairing of bone and skin is likely to become of clinical interest when three dimensional tissue reconstructive procedures and the appropriate supporting biomimetic materials are correctly assembled. In the present review, we provide an overview of the most promising biopolymers that may find clinical application in dento-maxillo-facial and plastic surgery

    Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    Get PDF
    Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering

    Effectiveness of the GAEC standard of cross compliance retain terraces on soil erosion control

    No full text
    The GAEC standard retain terraces of cross compliance prohibits farmers the elimination of existing terraces, with the aim to ensure the protection of soil from erosion. In the Italian literature there are not field studies to quantify the effects of the elimination or degradation of terraces on soil erosion. Therefore, the modeling approach was chosen and applied in a scenario analysis to evaluate increasing levels of degradation of stone wall terraces. The study was conducted on two sample areas: Lamole (700.8 ha, Tuscany) and Costaviola (764.73 ha, Calabria) with contrasting landscapes. The Universal Soil Loss Equation model (USLE) was applied in the comparative assessment of the soil erosion risk (Mg . ha-1 . yr-1), by simulating five increasing intensity of terrace degradation, respectively: conserved partially damaged, very damaged, partially removed, removed, each of which corresponding to different values of the indexes of verification in case of infringement to GAEC standard provided for by the AGEA rules which have come into force since December 2009 (Agency for Agricultural Payments). To growing intensity of degradation, a progressive loss of efficacy of terraces was attributed by increasing the values of the LS factor (length and slope) of USLE in relation with the local modification of the length and steepness of the slope between adjacent terraces. Basically, it was simulated the gradual return to the natural morphology of the slope. The results of the analysis showed a significant increase in erosion in relationship with increasing degradation of terraces. Furthermore, it is possible to conclude that the GAEC standard retain terraces is very effective with regard to the primary objective of reducing erosion. A further statistical analysis was performed to test the protective value of terraces against soil erosion in areas where agriculture was abandoned. The analysis was carried out by comparing the specific risk of erosion (Mg . ha-1 . yr-1) of polygons with land uses: forest and abandoned, with natural vegetation in evolution. In both areas, forest on totally degraded terraces is able to decrease erosion well below the tolerance threshold of 11.2 Mg . ha-1 . yr-1, in the same manner as conserved terraces do for other soil uses. At Lamole, the natural vegetation in evolution on completely degraded terraces is able to decrease erosion below the tolerance threshold. On the contrary, at Costaviola on the same soil use and level of terrace degradation, soil erosion remained above the tolerance threshold. This difference can be explained by considering that the average gradient of hillslopes (considered without terraces) is 65.4 % for Costaviola and 35.0 % for Lamole. From these findings it is possible to argue that terraces, although degraded, continue to play a role in the protection of soil against erosion in abandoned areas. Thus, they continue to exert a valuable environmental function in terms of production of public goods and services; in particular, in the decrease of hydrogeological risk

    Linking Climate Variables with Tuber borchii Sporocarps Production

    No full text
    Tuber borchii is an ectomycorrhizal edible truffle, commonly called “bianchetto” (whitish truffle) to distinguish it from the more valuable white truffle found in Italy (T. magnatum). Although Tuber borchii also has a fairly high commercial value, information on its ecology, and especially its optimum rainfall and temperature values are lacking. In recent years the issue of climate change has steadily grown in importance, not only in the scientific world, but also politically and in civil society. Over the last century there has been a general increase in the temperature in Italy of about 1˚C. Several studies have underlined how climatic changes influence the optimum growth and distribution of various species of truffle. This contribution aims to illustrate the fluctuation of T. borchii sporocarps production in different timescales and show how these alterations are driven by rainfall and temperature factors. The research, carried out in five different natural T. borchii production areas, reveals that the production of truffles is significantly higher after autumn months characterized by abundant rainfall and cold temperatures

    Assessing Soil Erosion by Monitoring Hilly Lakes Silting

    No full text
    Soil erosion continues to be a threat to soil quality, impacting crop production and ecosystem services delivery. The quantitative assessment of soil erosion, both by water and by wind, is mostly carried out by modeling the phenomenon via remote sensing approaches. Several empirical and process-based physical models are used for erosion estimation worldwide, including USLE (or RUSLE), MMF, WEPP, PESERA, SWAT, etc. Furthermore, the amount of sediment produced by erosion phenomena is obtained by direct measurements carried out in experimental sites. Data collection for this purpose is very complex and expensive; in fact, we have few cases of measures distributed at the basin scale to monitor this phenomenon. In this work, we propose a methodology based on an expeditious way to monitor the volume of hilly lakes with GPS, sonar sensor and aquatic drone. The volume is obtained by means of an automatic GIS procedure based on the measurements of lake depth and surface area. Hilly lakes can be considered as sediment containers. Time-lapse measurements make it possible to estimate the silting rate of the lake. The volume of 12 hilly lakes in Tuscany was measured in 2010 and 2018, and the results in terms of silting rate were compared with the estimates of soil loss obtained by RUSLE and MMF. The analyses show that all the lakes measured are subject to silting phenomena. The sediment estimated by the measurements corresponds well to the amount of soil loss estimated with the models used. The relationships found are significant and promising for a distributed application of the methodology, which allows rapid estimation of erosion phenomena. Substantial differences in the proposed comparison (mainly found in two cases) can be justified by particular conditions found on site, which are difficult to predict from the models. The proposed approach allows for a monitoring of basin-scale erosion, which can be extended to larger domains which have hilly lakes, such as, for example, the Tuscany region, where there are more than 10,000 lakes

    NANOSTRUCTURED BIOMATERIALS FOR TISSUE ENGINEERED BONE TISSUE RECONSTRUCTION

    No full text
    Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering

    Traditional landscape and rural development: comparative study in three terraced areas in northern, central and southern Italy to evaluate the efficacy of GAEC standard 4.4 of cross compliance

    No full text
    The recent National Strategic Plan 2007-2013 has introduced landscape as a strategic objective of the rural sector. This represents a minor revolution in the way of visualizing the role of the landscape, together with that of agriculture and the rural territory as a whole, and demonstrates the importance of treating the landscape with a systematic point of view. As part of the Efficond project, three sample areas have been identified, each of about 800-1000 hectares, in zones with important historical - cultural landscapes that are included in the National Catalogue of Historical Rural Landscapes. For each sample area a methodology has been applied, defined Historical Cultural Evaluation Approach, developed as part of a project for the monitoring of the Tuscan landscape that we have simplified and adapted. This methodology is based on the consideration that the landscape is the result of the centuries-old interaction between man and the environment, and so to define an element of the landscape as characteristic it is necessary to evaluate the land use dynamics and landscape changes that took place in the past, identifying those that have persisted for a long time, are slowly evolving or stabilized. The study of the historical landscape, which in the proposed methodology refers to the 50’s, has been done through the interpretation and analysis of aerial photographs taken on the GAI flight in 1954, and has allowed the characteristic, traditional and historical elements of that landscape to be identified and an insight to be gained into the cultural identity of the area. Through the creation of specific indices of density and intensity of the terracing obtained by photo-interpretation, field surveys and GIS elaborations, it was possible to classify the sample areas for this specific and important landscape element, compare the results in two periods and evaluate their frequency in the territory. Multi-temporal comparative analysis is being used increasingly often, especially for the study of territories of value, and in our case has been accompanied both by mapping of the landscape dynamics, which identifies the areas subject to transformations in the considered period, and by tables and figures that allow the evolution of a unit of land use to be followed, observing how this has evolved over time. The evaluation of these evolutionary dynamics has then been integrated with a set of indices, in part borrowed from landscape ecology, and in part specifically developed for areas historically shaped by man, which demonstrate that the landscape has become less fragmented and that the layout of fields has been adapted to a different agricultural model that has profoundly changed the structure of the traditional landscape. The efficacy of the laws protecting the characteristic elements of the landscape is strictly linked to the maintenance of its diversity and typicality and conservation of the complexity of the landscape mosaic. Its evaluation necessitates a historical analysis of the evolutionary dynamics conducted at a purely local level
    corecore