6 research outputs found

    A web-based geographic information system monitoring wildlife diseases in Abruzzo and Molise regions, Southern Italy

    No full text
    Abstract Background Nowadays there is a worldwide consensus on the importance of conducting wildlife disease surveillance. Indeed, 60% of emerging infectious diseases are zoonotic in nature, and the majority of these (71.8%) originate in wildlife. Surveillance of wildlife diseases is crucial to prevent negative effects on human and animal health. Data digitization and sharing are among the main goals for the present and coming years. Geographic Information Systems (GIS) are increasingly used to analyze the geographical distribution of diseases and the relationships between pathogenic factors and their geographic environments. Methods Wild animal’s samples collected in the Abruzzo and Molise regions and delivered to our laboratory are entered in our Laboratory Information System and processed to be displayed through the Web-GIS mash-up presented in this paper. We built it using both open source and proprietary solutions, to produce data driven interactive maps, charts and tables to help to understand the epidemiology of wild animal diseases, their spread and trend. Results Since 2013, 9.606 samples collected from wild animals have been analyzed in the laboratories of the IZS-Teramo and have been recorded in the system, facilitating the reporting to the judicial authorities and the identification of highly risky areas to set up control and repression measures. Moreover, thanks to the monitoring health protocol, a canine distemper epidemic in wolves has been detected and monitored in its temporal and spatial evolution, as well as cases of bovine tuberculosis in wild boars. Conclusions While it is more evident that the starting point is to choose the right sampling method, it is for sure less obvious that the information system in which data is stored is equally important. In fact, it should give the possibility to consult it in an easy and instructive way. GIS allows immediately grasping the spatial relationships between the data itself and those between the data and the territory; it is an important tool to support veterinary services in managing epidemic and non-epidemic emergencies and performing epidemiological investigations, but also to examine control plans and identify new gaps and challenges

    Phytochemical investigations on <i>Artemisia alba</i> Turra growing in the North-East of Italy

    No full text
    <p><i>Artemisia alba</i> Turra (Asteraceae) is an Euro-Mediterranean plant used in Veneto (North-East of Italy) as traditional medicine for the treatment of various diseases. <i>A. alba</i> is a taxonomically problematic species, characterised by common polymorphism leading to a quite high variability in secondary metabolites content. Nonetheless, the phytochemical knowledge on its phytoconstituents, especially non-volatile components, is limited. In the present paper, the phytochemical composition of a tincture obtained from the aerial parts of <i>A. alba</i> growing in Veneto is presented. Extensive chromatographic separations led to the isolation of three new sesquiterpene derivatives, whose structures were elucidated by 1D and 2D NMR experiments and mass spectrometry. Furthermore, flavonoid composition and volatile constituents of the tincture of <i>A. alba</i> were preliminary studied by HPLC–MS<sup>n</sup> and GC–MS, respectively.</p

    Engineered Antibody Derivatives in Preclinical and Clinical Development

    No full text
    corecore