72 research outputs found

    The significance of measuring monocyte tissue factor activity in patients with breast and colorectal cancer

    Get PDF
    Monocytes express tissue factor (mTF) in several conditions including cancer where levels may be valuable in assessing tumour presence and progression. Using a two-stage kinetic chromogenic assay (KCA), mTF levels were measured in controls [normal subjects (n = 60) and patients undergoing hernia repair or cholecystectomy (n = 60)], in patients with benign and malignant disease of the breast (n = 83) and of the large bowel (n = 62). This was performed under fresh (resting) conditions and after incubation for 6 h without (unstimulated) and with (stimulated) Escherichia coli endotoxin. The malignant groups showed higher mTF levels than each of the three controls for resting (P < 0.05 breast, P < 0.05 colorectal) unstimulated (P < 0.05 breast, P < 0.05 colorectal) and stimulated cells (P < 0.001 breast, P < 0.01 colorectal). Similarly, the benign inflammatory groups had higher mTF levels than controls for resting (P < 0.05 colorectal), unstimulated (P < 0.05 colorectal) and stimulated cells (P < 0.01 breast, P < 0.01 colorectal). There was no significant difference between malignant and benign inflammatory groups in each organ. mTF levels showed an increase corresponding to that of histological tumour progression and were higher in non-surviving patients. In conclusion, mTF levels are raised in malignant and inflammatory disease compared to controls and patients with non-inflammatory conditions. Stimulated cells give better discrimination between the groups and may be of value in identifying high risk individuals. mTF levels showed an association with tumour grade or stage and the patients' survival time

    ZBTB12 DNA methylation is associated with coagulation- and inflammation-related blood cell parameters: findings from the Moli-family cohort.

    Get PDF
    Background Zinc finger and BTB domain-containing protein 12 (ZBTB12) is a predicted transcription factor with potential role in hematopoietic development. Recent evidence linked low methylation level of ZBTB12 exon1 to myocardial infarction (MI) risk. However, the role of ZBTB12 in the pathogenesis of MI and cardiovascular disease in general is not yet clarified. We investigated the relation between ZBTB12 methylation and several blood parameters related to cardio-cerebrovascular risk in an Italian family-based cohort. Results ZBTB12 methylation was analyzed on white blood cells from the Moli-family cohort using the Sequenom EpiTYPER MassARRAY (Agena). A total of 13 CpG Sequenom units were analyzed in the small CpG island located in the only translated ZBTB12 exon. Principal component analysis (PCA) was performed to identify groups of CpG units with similar methylation estimates. Linear mixed effect regressions showed a positive association between methylation of ZBTB12 Factor 2 (including CpG units 8, 9–10, 16, 21) and TNF-ɑ stimulated procoagulant activity, a measure of procoagulant and inflammatory potential of blood cells. In addition, we also found a negative association between methylation of ZBTB12 Factor 1 (mainly characterized by CpG units 1, 3–4, 5, 11, and 26) and white blood cell and granulocyte counts. An in silico prediction analysis identified granulopoiesis- and hematopoiesis-specific transcription factors to potentially bind DNA sequences encompassing CpG1, CpG3–4, and CpG11. Conclusions ZBTB12 hypomethylation is linked to shorter TNF-ɑ stimulated whole blood coagulation time and increased WBC and granulocyte counts, further elucidating the possible link between ZBTB12 methylation and cardiovascular disease risk

    Variation of PEAR1 DNA methylation influences platelet and leukocyte function.

    Get PDF
    Background Platelet-endothelial aggregation receptor 1 (PEAR-1) is a transmembrane receptor involved in platelet activation and megakaryopoiesis whose expression is driven by DNA methylation. PEAR1 variants were associated with differential platelet response to activation and cardiovascular outcomes. We aimed at investigating the link between PEAR1 methylation and platelet and leukocyte function markers in a family-based population. Results We measured PEAR1 methylation in 605 Moli-family participants with available blood counts, plasma P-selectin and C-reactive protein, whole blood platelet P-selectin, and platelet-leukocyte mixed conjugate measurements. We performed principal component analysis (PCA) to identify groups of highly correlated CpG sites. We used linear mixed regression models (using age, gender, BMI, smoking, alcohol drinking, being a proband for family recruitment, being a member of myocardial infarction (MI) family as fixed effects, and family as a random effect) to evaluate associations between PEAR1 methylation and phenotypes. PEAR1 methylation Factor2, characterized by the previously identified megakaryocyte-specific CpG sites, was inversely associated with platelet-monocyte conjugates, P-selectin, and WBC counts, while positively associated with the platelet distribution width (PDW) and with leukocyte CD11b and L-selectin. Moreover, PEAR1 Factor2 methylation was negatively associated with INFLAscore, a low-grade inflammation score. The latter was partially mediated by the PEAR1 methylation effect on platelet variables. PEAR1 methylation association with WBC measurements and INFLAscore was confirmed in the independent cohort FLEMENGHO. Conclusions We report a significant link between epigenetic signatures in a platelet functional gene and inflammation-dependent platelet function variability measured in two independent cohorts

    Microparticles and a P-selectin-mediated pathway of blood coagulation

    Get PDF
    No abstract available (review) The paper describes a new paradigm for blood coagulation. According to this new interpretation, microparticle-bound, circulating tissue factor is concentrated to the site of endothelial activation through the interaction of P-selectin with its cognate ligand, PSGL.1
    corecore