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Abstract Blood-based biomarker testing of insulin resistance
(IR) and beta cell dysfunction may identify diabetes risk
earlier than current glycemia-based approaches. This retro-
spective cohort study assessed 1,687 US patients at risk for
cardiovascular disease (CVD) under routine clinical care with
a comprehensive panel of 19 biomarkers and derived factors
related to IR, beta cell function, and glycemic control. The
mean age was 53±15, 42 % were male, and 25 % had
glycemic indicators consistent with prediabetes. An additional
45% of the patients who had normal glycemic indicators were
identified with IR or beta cell abnormalities. After 5.3 months
of median follow-up, significantly more patients had im-
proved than worsened their glycemic status in the prediabetic
category (35 vs. 9 %; P<0.0001) and in the “high normal”
category (HbA1c values of 5.5–5.6; 56 vs. 18 %, p<0.0001).
Biomarker testing can identify IR early, enable and inform
treatment, and improve glycemic control in a high proportion
of patients.
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Introduction

The prevalence of diabetes has reached epidemic proportions,
affecting over 366 million people worldwide and more than
25 million in the USA alone. If present trends continue, one in
three individuals will meet the criteria for diabetes by 2030
[1–3]. Prediabetes currently affects more than 87 million US
adults (38 %) and confers a lifetime risk of conversion to
diabetes of 30–50 % [4, 5]. Insulin resistance syndromes
(diabetes, prediabetes, and metabolic syndrome) are associat-
edwith up to 70% of cardiovascular disease (CVD) cases, and
adults with diabetes are twice as likely to die from heart
disease and stroke than those without diabetes [3, 6, 7]. The
American Diabetes Association (ADA) estimates the cost of
managing diabetes for just 1 year to average $7,900 per
patient. If current trends continue, type 2 diabetes mellitus
(T2DM) is projected to cost the USA $500 billion per year by
2020 [8, 9].

While by current practice diabetes is generally managed on
the basis of fasting glucose and HbA1c [10–12], the
pathophysiology-based view of prediabetes and diabetes is
anchored in the paradigm that the root cause is insulin resis-
tance in peripheral tissue, which triggers an initial, compen-
satory hypersynthesis of insulin by pancreatic beta cells
[13–16]. Later-stage disease is characterized by pancreatic
beta cell dysfunction, failure, and burnout, leading to rela-
tive—and in some cases absolute—hypoinsulinemia. When
this occurs, circulating levels of insulin are not sufficient to
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overcome peripheral tissue insulin resistance, leading to
dysglycemia and hyperglycemia. Furthermore, high insulin
levels trigger the overproduction of very low-density lipopro-
tein (VLDL) particles in the liver, which, coupled with abnor-
mal remodeling of these triglyceride-rich VLDL particles,
leads to the development of “atherogenic dyslipidemia,” a
triad of elevated triglycerides, high levels of small, dense
LDL particles, and low levels of high-density lipoprotein
cholesterol (HDL-C). Hyperglycemia coupled with athero-
genic dyslipidemia leads to end-organ damage including ath-
erosclerosis, neuropathy, nephropathy, and retinopathy [17].

It is now possible to assess insulin resistance [18–34], beta
cell function [35–41], and glycemic control [10–12, 42–44]
using peripheral blood-based biomarkers [45–47]. According-
ly, we hypothesized that a higher proportion of at-risk patients
would be identified on the basis of comprehensive biomarker
testing for insulin resistance and beta cell function compared
to fasting glucose and HbA1c alone. Furthermore, we hypoth-
esized that providers could intervene more aggressively based
on these results and that patients would show improved gly-
cemic control, hence, shift to a lower diabetes risk category
when assessed at follow-up.

Methods

Study Design

This was a retrospective cohort study of 1,687 consecutive
patients presenting for risk assessment and risk reduction at
six prevention-focused outpatient clinics across the USA
(Madison, WI; Jackson, MS; Montgomery, AL; Charleston,
SC; Seattle, WA; and Salt Lake City, UT) enrolled between
Apr 1, 2012 and May 27, 2013. Laboratory results were
provided directly to each patient and physician and presented
in a format designed to highlight abnormal values and engage
patients, along with evidence-based treatment considerations
relevant to each individual’s identified risk. The manner and
degree to which biomarker data was used to guide treatment
decisions was based solely on the discretion of each physician;
no protocol-defined treatments were required. Family and
medical history, current medications, vital signs, and demo-
graphic information were collected from chart review and
matched to laboratory biomarker data, which were then de-
identified. The study protocol was approved, and a waiver of
informed consent granted by the Copernicus Group Institu-
tional Review Board (IRB; Durham, NC) and University of
Utah IRB.

Laboratory Measurements

Comprehensive laboratory testing included 19 blood-based
biomarkers and derived factors organized into three functional

categories: (1) glycemic control, (2) insulin resistance, and (3)
pancreatic beta cell function (Table 1). Fasting glucose was
measured by an ultraviolet (UV) method; HbA1c by
high-performance liquid chromatography; fructosamine
by a colorimetric method; alpha-hydroxybutyrate (α-
HB), oleic acid, and linoleoylglycerophosphocholine
(L-GPC) by electrospray ionization LC-mass spectrome-
try; leptin, proinsulin, and anti-glutamic acid decarbox-
ylase (anti-GAD) antibody by enzyme-linked immuno-
sorbent assay; adiponectin by latex turbidimetric immu-
noassay; free fatty acids by an enzymatic colorimetric
method and ferritin by a sandwich principle method;
and insulin and C-peptide by electrochemiluminescence
immunoassay. The glycation gap was calculated as:
measured HbA1c − predicted HbA1c (0.01908 ×
fructosamine [μmol/L]+1.099), and calculation of the
“insulin resistance score” (IRi score) was adapted from
[28]. The leptin/BMI and proinsulin/C-peptide ratios
were calculated as leptin (ng/mL)/BMI and proinsulin
(pmol/L)/C-peptide (ng/mL), respectively. The homeo-
static model assessment of insulin resistance (HOMA-
IR), a surrogate measure of insulin resistance, was cal-
culated as: glucose (mg/dL)×insulin/405 (μU/mL). Ref-
erence ranges for “high range” of each biomarker were
defined on the basis of cut points reported in the liter-
ature and based on internal analyses of population dis-
tributions derived from HDL, Inc. data (Table 1).

Statistical Analysis

Patients were classified into glycemic categories (i.e., normal,
prediabetic, and diabetic) using glucose and HbA1c levels
according to the ADA diagnostic guidelines [10–12]. Impor-
tantly, these categories are not used here as diagnoses (as
many patients were already taking anti-diabetic medications)
but, rather, a means of assessing the level of glycemic control
in a clinicallymeaningful way. Differences in patients’ clinical
and demographic data among the glycemic categories were
tested using one-way ANOVA and chi-squared tests for con-
tinuous and categorical data, respectively. The proportion of
patients classified as prediabetic or diabetic according to ADA
guidelines was compared to those identified with at least one
IR or beta cell biomarker in the high range using theMcNemar
paired test. Age- and gender-adjusted linear models were used
to test for linear trends in biomarker mean values among
glycemic categories. The normoglycemic category was divid-
ed into “normal” and “high normal” as defined by fasting
glucose <100 mg/dL but with HbA1c 5.5–5.6 % (consistent
with guidelines from the American Association of Clinical
Endocrinologists). Residual plots were inspected for normal-
ity and homoscedasticity, and biomarkers were transformed
using the natural logarithm as needed to improve model
assumpt ions . Mul t ip le tes t ing compared to the
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normoglycemic group was controlled using Dunnett adjusted
p values <0.05 for statistical significance. The first visit during
the study period was used for all cross-sectional analyses, and
the first and last visits were used to analyze changes in
glycemic categories. The proportions of patients in the high
normal and prediabetic categories that changed glycemic cat-
egories during follow-up were tested using 2-proportion Z
tests. All analyses were performed using StatView version 5
or SAS software (version 9.3; SAS Institute).

Results

Patient characteristics at baseline by glycemic category (de-
fined by fasting glucose and HbA1c) are shown in Table 2. A
total of 1,687 patients were enrolled, mean (SD) age was 53
(15)years, and 704 (42 %) were male. Based on fasting
glucose and HbA1c levels, 415 patients (25 %) had glycemic
control consistent with prediabetes and 343 (20 %) with
diabetes. These data reflect a high-risk cohort with almost half

(48 %) meeting the current criteria for metabolic syndrome,
which was also present in the normoglycemic group of pa-
tients (41 %). On average, the study population was obese,
with almost one third and one half of the patients previously
diagnosed with T2DM and/or hypertension, respectively.
Those in the glycemic categories corresponding to prediabetes
or diabetes were more likely to be obese, older males with
elevated blood pressure and taking multiple pharmacother-
apies. To note, 32 % of the patients classified as
normoglycemic were receiving anti-diabetic treatment at the
time of initial biomarker testing; presumably, these individuals
had a medical history of hyperglycemia or metabolic syn-
drome (Table 2). Patients classified as diabetic had a signifi-
cantly higher heart rate and stronger family history of both
diabetes and heart disease. One in six patients (16%) had been
diagnosed with coronary artery disease (CAD). More than
60% of patients were taking lipid-loweringmedication (most-
ly statins), while nearly 50 % had been prescribed with anti-
hypertensive and anti-inflammatory drugs.

Mean biomarker values for patients within each glycemic
category are shown in Table 3. Significant linear trends

Table 1 Comprehensive biomarker panel for assessing glycemic control, insulin resistance, and beta cell function

Biomarkers Biological function and/or clinical utility High
range

Glycemic control

Glucose (mg/dL) Fasting indicator of glucose homeostasis >125

HbA1c (%) Intermediate-term glycemic control (2–3 months) ≥6.5
Fructosamine
(μmol/L)

Short-term glycemic control (2–3 weeks) >339

Glycation Gap Indicator of increased risk of glycemic tissue injury >0.77

Insulin resistance

α-Hydroxybutyrate
(μg/mL)

Metabolomic marker of insulin resistance >5.7

Oleic acid (μg/mL) Metabolomic marker of insulin resistance >79

Linoleoyl-GPC (μg/
mL)

Metabolomic marker of insulin resistance <10.5

IRi Score Composite index calculated from metabolomic markers and fasting insulin level <8

Leptin (ng/mL) Adipokine regulates appetite and energy balance and links obesity with insulin resistance >43

Leptin/BMI ratio Marker of leptin resistance >1.17

Adiponectin (μg/mL) Adipokine—anti-inflammatory, stimulates beta oxidation of free fatty acids and enhances insulin sensitivity <10

Free fatty acids
(mmol/L)

Elevated in insulin resistance due to increased adipose tissue lipolysis and decreased beta oxidation may contribute
to insulin resistance and vascular dysfunction

>0.7

Ferritin (ng/mL) Iron transport protein and acute phase reactant elevated in association with insulin resistance and hemochromatosis >108

HOMA-IR Surrogate index of insulin resistance based on steady-state fasting insulin and glucose >4.2

Beta Cell Function:

Insulin (μU/mL) Hyperinsulinemia ≥12
Proinsulin (pmol/L) Hyperinsulinemia >16

C-peptide (ng/mL) Hyperinsulinemia >4.6

Proinsulin/C-peptide
ratio

Impaired insulin processing due to beta cell strain >4.9

Anti-GAD antibody
(IU/mL)

Indicator of islet autoimmunity occurs in type 1 diabetes or latent autoimmune diabetes of adults >5
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indicating worsening abnormalities were observed for each
biomarker in age- and gender-adjusted models across
glycemic categories. Importantly, significant biomarker
abnormalities (other than glycemic) were identified in
the high normal glycemic group compared to the normal
group, including leptin, adiponectin, linoleoyl-GPC, IRi
score, HOMA-IR, insulin, and proinsulin.

There were 766 patients (45 %) classified with one or
more biomarkers of IR or beta cell dysfunction in the high
range that were not classified “at risk” by glucose or
HbA1c. Conversely, 21 patients (1.2 %) were classified
as prediabetic/diabetic on the basis of fasting glucose or
HbA1c that had normal levels of IR and beta cell bio-
markers (Fig. 1). The two methods were in agreement for
the remaining 900 patients (N=1687 McNemar paired test
p value <0.0001). In order to investigate the possible
effects of multiple testing, the random binomial (15,
0.256) and Poisson (3.8) distributions were compared to
the observed distribution of positive tests, and the

Kolmogorov–Smirnov statistical test was conducted to
determine that the random distributions were significantly
different than the observed distribution (p<0.0001; Sup-
plemental Figure 1).

The proportion of patients identified with biomarker ab-
normalities specific to either insulin resistance or beta cell
function is shown in Table 4 grouped by traditional glycemic
category and current anti-diabetic medication status. In the
overall cohort, 1,424 (84.5 %) had at least one feature of
insulin resistance and 967 (57.3 %) had at least one feature
of beta cell dysfunction on comprehensive testing, while
1,078 (63.9 %) had at least two features of insulin resistance
and 562 (33.3 %) had at least two features of beta cell
dysfunction. Importantly, of those that were classified as
normoglycemic according to the traditional criteria and not
taking anti-diabetic medications, 77.2 % showed evidence of
insulin resistance and 36.4 % had beta cell dysfunction on the
basis of comprehensive testing (Table 4). Furthermore, pa-
tients on anti-diabetic medications who were classified

Table 2 Patient baseline characteristics by glycemic category

Number All Normal (55 %) Prediabetic (25 %) Diabetic (20 %) p valuea

Demographic

Age (years) 1,687 53 (15) 50 (16) 57 (13)* 56 (12)* <0.0001

Female 1,687 983 (58 %) 585 (63 %) 232 (56 %)* 166 (48 %)* <0.0001

Non-Hispanic Caucasian 1,644 795 (48 %) 423 (47 %) 194 (48 %) 178 (53 %) 0.18

Clinical

BMI (kg/m2) 1,618 30.2 (6.9) 28.7 (6.6) 31.1 (6.6)* 33.2 (7.0)* <0.0001

Systolic BP (mmHg) 1,648 123 (17) 120 (16) 125 (17)* 127 (19)* <0.0001

Diastolic BP (mmHg) 1,648 76 (10) 75 (10) 77 (11)* 77 (11)* <0.0001

Heart rate (bpm) 1,633 74 (12) 73 (11) 74 (12) 77 (13)* <0.0001

Currently smoking 1,589 81 (5.1 %) 41 (5 %) 22 (6 %) 18 (5 %) 0.82

Family history

T2DM 1,236 507 (41 %) 258 (36 %) 111 (37 %) 138 (63 %)* <0.0001

Hypertension 1,383 867 (62 %) 462 (59 %) 220 (64 %) 185 (71 %)* 0.0036

Premature CAD 1,193 371 (31 %) 186 (28 %) 92 (31 %) 93 (40 %)* 0.0021

Medical history

T2DM 1,532 458 (30 %) 88 (10 %) 102 (26 %)* 268 (90 %)* <0.0001

Hypertension 1,595 788 (49 %) 320 (36 %) 243 (62 %)* 225 (69 %)* <0.0001

CAD 1,588 260 (16 %) 118 (14 %) 94 (24 %)* 48 (14 %) <0.0001

Premature CAD 1,540 119 (7.7 %) 52 (6 %) 31 (8 %) 36 (11 %)* 0.017

Metabolic syndrome 1,530 733 (48 %) 335 (41 %) 219 (57 %)* 179 (54 %)* <0.0001

Current medications

Any anti-diabetic 1,686 777 (46 %) 297 (32 %) 172 (41 %)* 308 (90 %)* <0.0001

Any lipid-lowering 1,682 1,089 (65 %) 533 (57 %) 292 (71 %)* 264 (77 %)* <0.0001

Any anti-hypertensive 1,659 888 (54 %) 353 (39 %) 263 (64 %)* 272 (80 %)* <0.0001

Any anti-inflammatory 1,659 730 (44 %) 361 (40 %) 204 (50 %)* 165 (48 %)* 0.0004

Data are mean (SD) or n (%) for continuous or categorical data, respectively
a One-way ANOVA and chi-squared test for continuous and categorical data, respectively

*p value<0.05, multiple testing compared to the normal group was controlled using Dunnett method
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Table 3 Comprehensive biomarker profiles by glycemic category, mean (SD)

N=1,687 Normal (43 %) High normal (12 %) Prediabetic (25 %) Diabetic (20 %) Linear trend p valuea

Glycemic control

Glucose (mg/dL) 83 (9) 86 (8)* 97 (13)* 153 (59)* <0.0001

HbA1c (%) 5.09 (0.24) 5.54 (0.05)* 5.73 (0.35)* 7.96 (1.56)* <0.0001

Fructosamine (μmol/L) 224 (22) 225 (25) 227 (22) 303 (70)* <0.0001

Glycation gap −0.28 (0.47) 0.15 (0.47)* 0.31 (0.54)* 1.07 (1.05)* <0.0001

Insulin resistance

α-Hydroxybutyrate (μg/mL) 4.6 (2.4) 4.6 (2.1) 5.0 (2.4)* 6.4 (3.3)* <0.0001

Oleic acid (μg/mL) 48 (26) 50 (24) 51 (27) 53 (29)* 0.016

Linoleoyl-GPC (μg/mL) 17.7 (6.5) 16.3 (6.1)* 16.0 (5.7)* 16.4 (6.3)* <0.0001

IRi Score 12 (4) 11 (4)* 10 (4)* 11 (8)* <0.0001

Leptin (ng/mL) 28 (28) 31 (29)* 39 (37)* 40 (37)* <0.0001

Leptin/BMI ratio 0.90 (0.75) 0.97 (0.77) 1.15 (0.99)* 1.13 (0.96)* <0.0001

Adiponectin (μg/mL) 18.5 (17.5) 17.7 (15.2)* 13.6 (9.3)* 11.1 (8.7)* <0.0001

Free fatty acid (mmol/L) 0.52 (0.24) 0.55 (0.22) 0.55 (0.24) 0.57 (0.27) 0.050

Ferritin (ng/mL) 110 (107) 113 (122) 128 (167) 167 (165)* <0.0001

HOMA-IR 1.9 (1.5) 2.4 (1.6)* 3.6 (3.2)* 7.8 (12.2)* <0.0001

Beta cell function

Insulin (μU/mL) 9.4 (6.9) 11.2 (7.5)* 15.0 (12.0)* 20.5 (27.3)* <0.0001

Proinsulin (pmol/L) 10.1 (9.4) 12.1 (11.3)* 19.5 (17.2)* 30.8 (39.8)* <0.0001

C-peptide (ng/mL) 2.5 (1.1) 2.9 (1.1) 3.5 (1.8)* 3.1 (2.4)* <0.0001

Proinsulin/C-peptide ratio 4.0 (3.3) 4.1 (2.3) 5.6 (4.8)* 13.6 (11.8)* <0.0001

Anti-GAD antibody positive: n (%) 23 (3.2) 6 (2.9) 15 (3.6) 53 (16)* <0.0001

All biomarkers had <5 % missing data
a All continuous biomarkers were log transformed (except glycation gap) for improved normality and homoscedasticity of residual errors in age and
gender adjusted linear models

*p value<0.05, multiple testing compared to the normal group was controlled using Dunnett method

Fig. 1 All patients were classified as at risk based on two criteria: first,
high-range values of one or more biomarkers of insulin resistance (IR) or
beta cell function, and second, traditional glycemic indicators (fasting
glucose≥100 mg/dL or HbA1c≥5.7 %). The proportion of patients
identified with one or more biomarkers of IR or beta cell function in the

high range but normal glycemic indicators (glucose<100 mg/dL and
HbA1c<5.7, N=766) compared to the proportion of patients with abnor-
mal glycemic but normal IR and beta cell function markers (N=21) are
shown. The two methods were in agreement for the remaining 900
patients. N=1687, McNemar paired test p<0.0001
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normoglycemic according to traditional criteria showed sig-
nificantly higher rates of beta cell dysfunction than those not
on treatment (p<0.05), suggesting that the goal on treating
HbA1c may still leave significant residual risk (Table 4).

Figure 2 illustrates the degree and heterogeneity of under-
lying insulin resistance and beta cell dysfunction in the
“normoglycemic” patients by showing which individual bio-
markers were identified above the high range cut point. Of the
929 patients that were classified as normoglycemic on the
basis of fasting glucose and HbA1c, 766 (82 %) showed at
least one biomarker in the high range. As shown in Fig. 2a,
there was a broad distribution of which biomarkers were
elevated, with no single marker accounting for even half of
this number. There were also differences noted in the number
of biomarker abnormalities identified (Fig. 2b). Examination
of individual patient biomarker profiles revealed that while
there is often overlap between elevated markers, distinct pat-
terns exist that would not be evident with a single biomarker
or even a smaller combination of biomarkers (data not
shown).

A subset of patients (N=915) had multiple biomarker
panels performed during the study period, with a median
interval of 5.3 months between the first and last tests. Patients
that had follow-up visits were more likely to be non-white
males with coronary artery disease; metabolic syndrome; and
taking anti-diabetic, lipid-lowering, and anti-inflammatory
medications; they also entered the study about 1 month earlier
than those without a follow-up visit (all p<0.05). At follow-
up, a significantly higher proportion of those initially identi-
fied as prediabetic reverted to normoglycemic category than
progressing to diabetes (35 vs. 9 %, p<0.0001; Fig. 3), and a
significantly higher proportion of those identified as high

normal reverted to the normal category than worsened (56
vs. 18 %, p<0.0001; Fig. 3). Overall, a significantly higher
proportion of patients improved glycemic category rather than
worsened despite the fact that the higher number of normal at
baseline provided more opportunity for worsening (20 vs.
14 %, p=0.0003). After grouping the patient data in Fig. 3
by patient medication status, a statistical test for homogeneity
across medication status showed no significant differences in
the percent change in glucose status between visits (p=0.55).

Discussion

This study evaluated the clinical utility of incorporating a
comprehensive, multimarker panel into routine clinical care
of patients at risk for, or with, diabetes. The results demon-
strate three main findings. First, metabolic abnormalities were
identified in a substantial proportion of patients who would
not have been identified as prediabetic according to conven-
tional glycemic cut points, thus providing opportunities for
earlier intervention. Second, no single biomarker was respon-
sible for this increased sensitivity—diverse patterns of bio-
marker abnormalities were observed—particularly in the
normoglycemic patients. Finally, the improvements in glyce-
mic category observed in the subset of patients for which
follow-up data was available suggest that this multimarker
approach can be successfully implemented in routine clinical
practice to improve traditional goal attainment and, potential-
ly, patient outcomes.

The ability to detect the risk for progression to diabetes
earlier than is currently possible with the tools available to
most clinicians is of critical importance in the effort to address

Table 4 Percentage of patients having biomarkers of insulin resistance or beta cell function in the high range by glycemic category and anti-diabetic
medication status

Glycemic category Insulin resistance (%) Beta cell dysfunction (%)

All YES anti-diabetic
medications

NO anti-diabetic
medications

All YES anti-diabetic
medications

NO anti-diabetic
medications

% of patients having one or more (1+) high risk biomarker levels

Normal (N=929, 55 %) 78.4 80.8 77.2 39.8 47.1* 36.4

Prediabetes (N=415, 25 %) 90.8 89.0 92.2 68.7 69.2 68.3

Diabetes (N=343, 20 %) 93.3 93.5 91.2 91.0 90.6 94.1

All 84.5 87.6* 81.7 57.3 69.2* 47.1

% of patients having two or more (2+) high risk biomarker levels

Normal (N=929, 55 %) 54.7 58.9 52.7 16.0 19.5* 14.4

Prediabetes (N=415, 25 %) 69.9 72.1 68.3 43.6 44.2 43.2

Diabetes (N=343, 20 %) 81.6 81.2 85.3 67.4 66.6 73.5

All 63.9 70.7* 58.1 33.3 43.6* 24.3

*p value<0.05, chi-squared test between patients using and not using anti-diabetic medications by glycemic category and overall

602 J. of Cardiovasc. Trans. Res. (2014) 7:597–606



the growing diabetes epidemic [5, 48, 49]. Earlier detection
allows appropriate interventions to be administered when they
are likely to be most effective. Preservation of pancreatic beta
cell function has been shown to be the key to achieving good
clinical outcomes [5]. Unfortunately, by the time dysglycemia
is evident and a patient meets current criteria for prediabetes,
substantial beta cell destruction has already occurred [5].
Since it is now well known that the vast majority of T2DM-
associated beta cell destruction is preceded (by several years)
by insulin resistance and increased compensating beta cell
activity, identification and reversal of such abnormalities be-
fore damage occurs should be a goal of treatment. In the
present study, 40 % of the cohort demonstrated signs of
abnormalities related to insulin resistance and/or beta cell

strain but had not yet lost glycemic control sufficient to meet
traditional criteria for prediabetes. This represents a substan-
tial increase in sensitivity of diabetes risk detection and a
significant opportunity for early clinical intervention.

Much of this increased sensitivity results from the
multimarker approach utilized in the present study. It is not
surprising that as the focus of metabolic risk detection shifts to
an earlier stage of the disease process, no single biomarker is
able to identify every individual at risk. Insulin resistance and
beta cell strain/dysfunction are not homogenous pathologies
but, rather, are the result of multifactorial interactions between
a large number of genetic and lifestyle risk factors. The
development of prediabetes is usually identified first as either
impaired fasting glucose (IFG) or impaired glucose tolerance

Fig. 2 Evidence of insulin
resistance and beta cell
dysfunction in the
normoglycemic patients is highly
prevalent and heterogenous. Of
those patients classified as
normoglycemic (glucose<
100 mg/dL and HbA1c<5.7, N=
929), 82 % demonstrated at least
one high range biomarker of
insulin resistance or beta cell
function. a Proportion of
normoglycemic patients
demonstrating high range values
of each biomarker; 95 %
confidence limits are shown. b
Distribution of the total number of
high range biomarker values
observed in normoglycemic
patients
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(IGT), each presenting different diagnostic challenges and
implications for progression of disease. Differences between
these two states are often thought to reflect tissue specificity of
insulin resistance; the etiology of which is most likely differ-
ent in skeletal muscle, adipose tissue, and liver, with different
biomarker signatures [50]. Other less frequent causes of dia-
betes such as autoimmune destruction of beta cells (e.g., late-
onset autoimmune diabetes of adulthood) are often missed in
their early stages but can easily be identified by assaying anti-
GAD antibodies [41].

Conceptually, there are three main benefits to the
multimarker approach in identifying diabetes risk. First, as
described above, a panel of biomarkers provides increased
sensitivity for detecting a heterogenous set of underlying
pathological processes. Second, the number of abnormalities
can be used in a practical sense to help stratify aggressiveness
of intervention. For example, a borderline HbA1c value may
be less worrisome if there is little evidence of insulin resis-
tance, whereas even a normal HbA1c may be of concern if
several aspects of insulin resistance and beta-cell function
indicate risk. Finally, multimarker panels allow clinicians to
learn about the unique pathobiology of individual patients
which may help in personalizing care, engaging patients,
and choosing the most effective treatments to slow or reverse
the disease process [5, 18–21, 35]. While not designed as an
outcomes study, the subset of patients in this analysis that had
follow-up panels performed during the study period allowed

the assessment of changes in glycemic categories. The obser-
vation that more than a third of patients categorized as predi-
abetic at first assessment had achieved normal glycemic con-
trol within 6 months suggests a significant improvement in
their clinical care. This is particularly impressive considering
that many of these patients had previously been diagnosed
with diabetes and/or were already receiving anti-diabetic med-
ications (as opposed to a cohort of newly identified predia-
betics). As demonstrated in the Diabetes Prevention Program
Outcomes Study (DPPOS), prediabetic patients who achieved
even transient normal glycemic control during a 3-year inter-
vention had their risk of diabetes reduced by more than 50 %
over the subsequent 6 years [49]. Furthermore, the fact that
more than half of the patients initially identified as high
normal (i.e., HbA1c values 5.5–5.6) demonstrated improve-
ments upon retest suggests that successful preventative mea-
sures were employed. It is important to note that no standard-
ized intervention was employed in the patients described here,
so conclusions are limited. However, the fact that these bio-
markers were successfully integrated into routine practice is
provocative.

The development of more effective treatment algorithms
based on rapidly obtained and relatively inexpensive biomark-
er profiles that reflect underlying pathology is an important
priority for both clinicians and researchers. One study dem-
onstrating the effectiveness of “targeted pathophysiologic”
therapy to reverse prediabetes was recently described [48].

Fig. 3 Changes in glycemic category associated with care guided by
comprehensive biomarker testing. Patients were categorized based on
glucose and HbA1c values obtained at the initial visit as either normal
(glucose<100 mg/dL and HbA1c<5.5, N=418), high normal (glucose
<100 mg/dL and HbA1c 5.5–5.6, N=134), prediabetic (glucose 100–
124 mg/dL or HbA1c 5.7–6.4, N=216), or diabetic (glucose ≥125 mg/dL

or HbA1c ≥6.5, N=147). The proportion of patients within each category
who improved (by at least one category), remained unchanged, or wors-
ened (by at least one category) upon retest (the median follow-up was
5.3 months) are shown. Patients in the prediabetic and high normal
categories were three to four times as likely to improve than worsened
(p value <0.0001); 95 % confidence limits are shown
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High-risk patients were screened with an oral glucose toler-
ance test (OGTT), which was used to derive indices of both
insulin resistance and beta cell function. A treatment algo-
rithm based on the severity of these abnormalities was used to
direct treatment; impressively, more than 50 % of prediabetic
patients reverted to normal glucose tolerance. While logistical
requirements of the OGTT limit its usefulness in most clinical
settings, a panel of fasting blood markers may provide a
practical alternative. Additional studies are underway to better
understand the treatment implications of different biomarker
profiles.

Conclusions

In this study, we demonstrated the benefits of compre-
hensive, multimarker testing for insulin resistance and
beta cell function to detect metabolic disease early on
the insulin resistance/glycemia continuum, as a means to
guide personalized dietary, lifestyle, and pharmacothera-
py treatment regimens, and prevent and/or reverse the
disease process. By using a comprehensive biomarker
panel, we were able not only to appraise the severity of
dysglycemia beyond traditional measures but also to
identify physiological signs of insulin resistance in
about 80 % of high-risk individuals who would have
been classified as “normoglycemic” by conventional
glycemic criteria. This clearly demonstrates the large
number of individuals with normal glucose and HbA1c
values who can be identified as having metabolic dis-
ease using a comprehensive biomarker panel. Prompt
intervention in such patients may reverse the disease
course and prevent progression to diabetes; this hypoth-
esis will need to be tested in large, randomized, pro-
spective clinical studies.
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