150 research outputs found

    Quantifying the influence of Bessel beams on image quality in optical coherence tomography

    Get PDF
    Light scattered by turbid tissue is known to degrade optical coherence tomography (OCT) image contrast progressively with depth. Bessel beams have been proposed as an alternative to Gaussian beams to image deeper into turbid tissue. However, studies of turbid tissue comparing the image quality for different beam types are lacking. We present such a study, using numerically simulated beams and experimental OCT images formed by Bessel or Gaussian beams illuminating phantoms with optical properties spanning a range typical of soft tissue. We demonstrate that, for a given scattering parameter, the higher the scattering anisotropy the lower the OCT contrast, regardless of the beam type. When focusing both beams at the same depth in the sample, we show that, at focus and for equal input power and resolution, imaging with the Gaussian beam suffers less reduction of contrast. This suggests that, whilst Bessel beams offer extended depth of field in a single depth scan, for low numerical aperture (NA  0.95), superior contrast (by up to ~40%) may be obtained over an extended depth range by a Gaussian beam combined with dynamic focusing

    175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser

    No full text
    We report a harmonically mode-locked vertical external cavity surface emitting laser (VECSEL) producing 400 fs pulses at a repetition frequency of 175 GHz with an average output power of 300 mW. Harmonic mode-locking was established using a 300 µm thick intracavity single crystal diamond heat spreader in thermal contact with the front surface of the gain sample using liquid capillary bonding. The repetition frequency was set by the diamond microcavity and stable harmonic mode locking was achieved when the laser cavity length was tuned so that the laser operated on the 117th harmonic of the fundamental cavity. When an etalon placed intracavity next to the gain sample, but not in thermal contact was used pulse groups were observed. These contained 300 fs pulses with a spacing of 5.9 ps. We conclude that to achieve stable harmonic mode locking at repetition frequencies in the 100s of GHz range in a VECSEL there is a threshold pulse energy above which harmonic mode locking is achieved and below which groups of pulses are observed

    Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers

    Get PDF
    One of the most application-relevant milestones that remain to be achieved in the field of passively mode-locked surface-emitting semiconductor lasers is the integration of the semiconductor absorber into the gain structure, enabling the realization of ultra-compact high-repetition-rate laser devices suitable for wafer-scale integration. We have recently succeeded in fabricating the key element in this concept, a quantum-dot-based saturable absorber with a very low saturation fluence, which for the first time allows stable mode locking of surface-emitting semiconductor lasers with the same mode areas on gain and absorber. Experimental results at high repetition rates of up to 30GHz are show

    Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour

    Get PDF
    Published online: 01 July 2016Identifying tumour margins during breast-conserving surgeries is a persistent challenge. We have previously developed miniature needle probes that could enable intraoperative volume imaging with optical coherence tomography. In many situations, however, scattering contrast alone is insufficient to clearly identify and delineate malignant regions. Additional polarization-sensitive measurements provide the means to assess birefringence, which is elevated in oriented collagen fibres and may offer an intrinsic biomarker to differentiate tumour from benign tissue. Here, we performed polarization-sensitive optical coherence tomography through miniature imaging needles and developed an algorithm to efficiently reconstruct images of the depth-resolved tissue birefringence free of artefacts. First ex vivo imaging of breast tumour samples revealed excellent contrast between lowly birefringent malignant regions, and stromal tissue, which is rich in oriented collagen and exhibits higher birefringence, as confirmed with co-located histology. The ability to clearly differentiate between tumour and uninvolved stroma based on intrinsic contrast could prove decisive for the intraoperative assessment of tumour margins.Martin Villiger, Dirk Lorenser, Robert A. McLaughlin, Bryden C. Quirk, Rodney W. Kirk, Brett E. Bouma and David D. Sampso

    Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system

    Get PDF
    Advances in optical imaging modalities, such as optical coherence tomography (OCT), enable us to observe tissue microstructure at high resolution and in real time. Currently, core-needle biopsies are guided by external imaging modalities such as ultrasound imaging and x-ray computed tomography (CT) for breast and lung masses, respectively. These image-guided procedures are frequently limited by spatial resolution when using ultrasound imaging, or by temporal resolution (rapid real-time feedback capabilities) when using x-ray CT. One feasible approach is to perform OCT within small gauge needles to optically image tissue microstructure. However, to date, no system or core-needle device has been developed that incorporates both three-dimensional OCT imaging and tissue biopsy within the same needle for true OCT-guided core-needle biopsy. We have developed and demonstrate an integrated core-needle biopsy system that utilizes catheter-based 3-D OCT for real-time image-guidance for target tissue localization, imaging of tissue immediately prior to physical biopsy, and subsequent OCT imaging of the biopsied specimen for immediate assessment at the point-of-care. OCT images of biopsied ex vivo tumor specimens acquired during core-needle placement are correlated with corresponding histology, and computational visualization of arbitrary planes within the 3-D OCT volumes enables feedback on specimen tissue type and biopsy quality. These results demonstrate the potential for using real-time 3-D OCT for needle biopsy guidance by imaging within the needle and tissue during biopsy procedures

    Multimodal imaging needle combining optical coherence tomography and fluorescence for imaging of live breast cancer cells labeled with a fluorescent analog of tamoxifen

    Get PDF
    Significance: Imaging needles consist of highly miniaturized focusing optics encased within a hypodermic needle. The needles may be inserted tens of millimeters into tissue and have the potential to visualize diseased cells well beyond the penetration depth of optical techniques applied externally. Multimodal imaging needles acquire multiple types of optical signals to differentiate cell types. However, their use has not previously been demonstrated with live cells.Aim: We demonstrate the ability of a multimodal imaging needle to differentiate cell types through simultaneous optical coherence tomography (OCT) and fluorescence imaging.Approach: We characterize the performance of a multimodal imaging needle. This is paired with a fluorescent analog of the therapeutic drug, tamoxifen, which enables cell-specific fluorescent labeling of estrogen receptor-positive (ER+) breast cancer cells. We perform simultaneous OCT and fluorescence in situ imaging on MCF-7 ER+ breast cancer cells and MDA-MB-231 ER-cells. Images are compared against unlabeled control samples and correlated with standard confocal microscopy images.Results: We establish the feasibility of imaging live cells with these miniaturized imaging probes by showing clear differentiation between cancerous cells.Conclusions: Imaging needles have the potential to aid in the detection of specific cancer cells within solid tissue

    Vertical-external-cavity surface-emitting lasers and quantum dot lasers

    Full text link
    The use of cavity to manipulate photon emission of quantum dots (QDs) has been opening unprecedented opportunities for realizing quantum functional nanophotonic devices and also quantum information devices. In particular, in the field of semiconductor lasers, QDs were introduced as a superior alternative to quantum wells to suppress the temperature dependence of the threshold current in vertical-external-cavity surface-emitting lasers (VECSELs). In this work, a review of properties and development of semiconductor VECSEL devices and QD laser devices is given. Based on the features of VECSEL devices, the main emphasis is put on the recent development of technological approach on semiconductor QD VECSELs. Then, from the viewpoint of both single QD nanolaser and cavity quantum electrodynamics (QED), a single-QD-cavity system resulting from the strong coupling of QD cavity is presented. A difference of this review from the other existing works on semiconductor VECSEL devices is that we will cover both the fundamental aspects and technological approaches of QD VECSEL devices. And lastly, the presented review here has provided a deep insight into useful guideline for the development of QD VECSEL technology and future quantum functional nanophotonic devices and monolithic photonic integrated circuits (MPhICs).Comment: 21 pages, 4 figures. arXiv admin note: text overlap with arXiv:0904.369
    • …
    corecore