126 research outputs found
Soft Spin Wave Near nu=1: Evidence for a Magnetic Instability in Skyrmion Systems
The ground state of the two dimensional electron gas near =1 is
investigated by inelastic light scattering measurements carried down to very
low temperatures. Away from =1, the ferromagnetic spin wave collapses and
a new low-energy spin wave emerges below the Zeeman gap. The emergent spin wave
shows soft behavior as its energy increases with temperature and reaches the
Zeeman energy for temperatures above 2 K. The observed softening indicates an
instability of the two dimensional electron gas towards a magnetic order that
breaks spin rotational symmetry. We discuss our findings in light of the
possible existence of a Skyrme crystal.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
UAS Literary & Arts Journal
Proof copy provided by Tidal Echoes.Featuring the work of students, faculty, and staff of the University of Alaska Southeast and members of the community.A Note from Loren, Sometimes Known as Senior Editor -- A Letter from Josh, Affectionately Known as “Sugah” (say it with a southern accent) -- A Note from Emily Wall -- On the Move -- Dangly Jangly Things -- Taco Surf -- Midwestern Trash -- On the Distaff Side -- Christmas Joy -- The Three Little McCormicks -- Trollin’ Ray’s Brain: An Interview with Ray Troll -- His Long Coat Turning -- First Autumn -- Pinta Cove Birthday Gifts -- September Wings -- When in Rome -- Early Morning Conspiracy Theory -- Flesh Wound -- Two Ravens, Five Ways -- Shades of Brown: The Question -- Hayfield-Clarke Psychiatric Center -- Hardscrabble -- Smoked Meat Sandwiches -- Slime Squishing Through Gold: An Interview with Nora Marks Dauenhauer -- Berries -- Buds -- Grandpa Jakwteen in Eclipse -- Cross Talk -- Voices -- Trouble -- Flying Home -- Snorkeling at Hanauma Bay -- Genocide -- Raven, Saving It for Later -- Mama Abel’s -- Settling In -- Blue -- Dad at 27 -- Dad photographs mother -- Backyard theatre & Oz -- Love-in, Easter Day, 1968 -- Topanga Corral -- Swallowing Senora -- Keeping Time on the Kee Nax Trail -- Ode to Ching -- Beneath the Surface (chapter title) -- A Visit from the Wild -- Teacher’s Pets -- Centennial -- See Spot Rot -- With Salsa -- Moonbaby -- The Fine Art of Raising a Tarpaulin -- Prologue -- Epiphany 2008 -- View of Auke Lake -- Shark Fins -- Translating Pasternak -- Raven Boys -- Institutional Back Door -- Uneasy Disguise -- Christmas Wind -- The Life and Times of the Orlando Bloom Fan Club -- Writer & Artist Biographie
Recommended from our members
Toward an integrative understanding of social behavior: new models and new opportunities.
Social interactions among conspecifics are a fundamental and adaptively significant component of the biology of numerous species. Such interactions give rise to group living as well as many of the complex forms of cooperation and conflict that occur within animal groups. Although previous conceptual models have focused on the ecological causes and fitness consequences of variation in social interactions, recent developments in endocrinology, neuroscience, and molecular genetics offer exciting opportunities to develop more integrated research programs that will facilitate new insights into the physiological causes and consequences of social variation. Here, we propose an integrative framework of social behavior that emphasizes relationships between ultimate-level function and proximate-level mechanism, thereby providing a foundation for exploring the full diversity of factors that underlie variation in social interactions, and ultimately sociality. In addition to identifying new model systems for the study of human psychopathologies, this framework provides a mechanistic basis for predicting how social behavior will change in response to environmental variation. We argue that the study of non-model organisms is essential for implementing this integrative model of social behavior because such species can be studied simultaneously in the lab and field, thereby allowing integration of rigorously controlled experimental manipulations with detailed observations of the ecological contexts in which interactions among conspecifics occur
Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels
International audienceClostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels
ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices: Summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to update the 1998 pacemaker guidelines)
The current update of the ACC/AHA/NASPE Guidelines for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices includes several significant changes in the recommendations and in the supporting narrative portion. In this summary, we list the updated recommendations along with the respective 1998 recommendations, each one accompanied by a brief comment outlining the rationale for the changes, additions, or deletions. All new or revised recommendations are listed in the second column and appear in boldface type. References that support either the 1998 recommendations that have not changed or the new or revised recommendations are noted in parentheses at the end of each recommendation. The reader is referred to the full-text version of the guidelines posted on the American College of Cardiology (ACC), American Heart Association (AHA), and North American Society for Pacing and Electrophysiology (NASPE) World Wide Web sites for a more detailed exposition of the rationale for these changes. In addition to the recommendation changes listed here, this update includes an expanded section on the selection of pacemakers and implantable cardioverter-defibrillators (ICDs) that reflects the technical advances that have taken place since 1998. A brief expanded summary of pacemaker follow-up procedures is also new to these guidelines. For both of these expanded sections, the reader is referred to the online full-text version
Trans-ethnic Meta-analysis and Functional Annotation Illuminates the Genetic Architecture of Fasting Glucose and Insulin
Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loc
Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms
Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin
ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices)
This revision of the “ACC/AHA/NASPE Guidelines for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices” updates the previous versions published in 1984, 1991, 1998, and 2002. Revision of the statement was deemed necessary for multiple reasons: 1) Major studies have been reported that have advanced our knowledge of the natural history of bradyarrhythmias and tachyarrhythmias, which may be treated optimally with device therapy; 2) there have been tremendous changes in the management of heart failure that involve both drug and device therapy; and 3) major advances in the technology of devices to treat, delay, and even prevent morbidity and mortality from bradyarrhythmias, tachyarrhythmias, and heart failure have occurred
- …