145 research outputs found

    Sitagliptin reduces cardiac apoptosis, hypertrophy and fibrosis primarily by insulin-dependent mechanisms in experimental type-II diabetes. Potential roles of GLP-1 isoforms

    Get PDF
    Background:Myocardial fibrosis is a key process in diabetic cardiomyopathy. However, their underlying mechanisms have not been elucidated, leading to a lack of therapy. The glucagon-like peptide-1 (GLP-1) enhancer, sitagliptin, reduces hyperglycemia but may also trigger direct effects on the heart.Methods:Goto-Kakizaki (GK) rats developed type-II diabetes and received sitagliptin, an anti-hyperglycemic drug (metformin) or vehicle (n=10, each). After cardiac structure and function assessment, plasma and left ventricles were isolated for biochemical studies. Cultured cardiomyocytes and fibroblasts were used for in vitro assays.Results:Untreated GK rats exhibited hyperglycemia, hyperlipidemia, plasma GLP-1 decrease, and cardiac cell-death, hypertrophy, fibrosis and prolonged deceleration time. Moreover, cardiac pro-apoptotic/necrotic, hypertrophic and fibrotic factors were up-regulated. Importantly, both sitagliptin and metformin lessened all these parameters. In cultured cardiomyocytes and cardiac fibroblasts, high-concentration of palmitate or glucose induced cell-death, hypertrophy and fibrosis. Interestingly, GLP-1 and its insulinotropic-inactive metabolite, GLP-1(9-36), alleviated these responses. In addition, despite a specific GLP-1 receptor was only detected in cardiomyocytes, GLP-1 isoforms attenuated the pro-fibrotic expression in cardiomyocytes and fibroblasts. In addition, GLP-1 receptor signalling may be linked to PPARδ activation, and metformin may also exhibit anti-apoptotic/necrotic and anti-fibrotic direct effects in cardiac cells.Conclusions:Sitagliptin, via GLP-1 stabilization, promoted cardioprotection in type-II diabetic hearts primarily by limiting hyperglycemia e hyperlipidemia. However, GLP-1 and GLP-1(9-36) promoted survival and anti-hypertrophic/fibrotic effects on cultured cardiac cells, suggesting cell-autonomous cardioprotective actionsThis work was supported by national funding from Ministerio de Educación y Ciencia (SAF2009-08367), Comunidad de Madrid (CCG10-UAM/ BIO-5289), and a unrestricted grant from by Merck/MS

    Left ventricular mass increases with deteriorating glucose tolerance, especially in women: Independence of increased arterial stiffness or decreased flow-mediated dilation - The Hoorn Study

    Get PDF
    OBJECTIVE - Type 2 diabetes and impaired glucose metabolism (IGM) are associated with an increased cardiovascular disease (CVD) risk. Increased left ventricular mass (LVM) is thought to increase CVD risk through several unfavorable cardiac changes. Type 2 diabetes and IGM are associated with increased LVM, but the underlying mechanism is unclear. We investigated the association between glucose tolerance status (GTS) and LVM and explored whether any such association could be mediated through increased arterial stiffness, impaired endothelial function, or the presence of atherosclerosis. RESEARCH DESIGN AND METHODS - We used ultrasound to measure LVM, carotid and femoral stiffness, carotid-femoral transit time, and flow-mediated vasodilation (FMD) and tonometry to estimate compliance and augmentation index. The study population (n = 780) consisted of 287 individuals with normal glucose metabolism (NGM), 179 with IGM, and 314 with type 2 diabetes, and the mean age was 68.4 years. RESULTS - In women, after adjusting for age, height, BMI, and mean arterial pressure, LVM increased significantly with deteriorating GTS (LVM 157 g in NGM, 155 g in IGM, and 169 g in type 2 diabetes, P for trend <0.018). Additional adjustment for arterial stiffness, FMD, or the presence of atherosclerosis did not materially alter the results, even though these variables were significantly associated with both GTS and LVM. Indexes of hyperglycemia/-insulinemia or insulin resistance explained at most 7% of the association between GTS and LVM. In men, no statistically significant associations were observed. CONCLUSIONS - Our data expand the conceptual view of the pathogenesis of GTS-related changes in LVM because we show that the increase in LVM in women is independent of increased arterial stiffness, impaired FMD, or the presence of atherosclerosis. In addition, we show that this increase in LVM is only minimally explained by indexes of hyperglycemia/-insulinemia or insulin resistance. Our data may, in part, explain the increased CVD risk seen in women with deteriorating GTS

    Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload

    Get PDF
    Pathologic myocardial hypertrophy develops when the heart is chronically pressure-overloaded. Elevated intracellular cGMP-levels have been reported to prevent the development of pathologic myocardial hypertrophy, therefore we investigated the effects of chronic activation of the cGMP producing enzyme, soluble guanylate cyclase by Cinaciguat in a rat model of pressure overload-induced cardiac hypertrophy. Abdominal aortic banding (AAB) was used to evoke pressure overload-induced cardiac hypertrophy in male Wistar rats. Sham operated animals served as controls. Experimental and control groups were treated with 10 mg/kg/day Cinaciguat (Cin) or placebo (Co) p.o. for six weeks, respectively. Pathologic myocardial hypertrophy was present in the AABCo group following 6 weeks of pressure overload of the heart, evidenced by increased relative heart weight, average cardiomyocyte diameter, collagen content and apoptosis. Cinaciguat did not significantly alter blood pressure, but effectively attenuated all features of pathologic myocardial hypertrophy, and normalized functional changes, such as the increase in contractility following AAB. Our results demonstrate that chronic enhancement of cGMP signalling by pharmacological activation of sGC might be a novel therapeutic approach in the prevention of pathologic myocardial hypertrophy

    Uplifting manhood to wonderful heights? News coverage of the human costs of military conflict from world war I to Gulf war Two

    Get PDF
    Domestic political support is an important factor constraining the use of American military power around the world. Although the dynamics of war support are thought to reflect a cost-benefit calculus, with costs represented by numbers of friendly war deaths, no previous study has examined how information about friendly, enemy, and civilian casualties is routinely presented to domestic audiences. This paper establishes a baseline measure of historical casualty reporting by examining New York Times coverage of five major wars that occurred over the past century. Despite important between-war differences in the scale of casualties, the use of conscription, the type of warfare, and the use of censorship, the frequency of casualty reporting and the framing of casualty reports has remained fairly consistent over the past 100 years. Casualties are rarely mentioned in American war coverage. When casualties are reported, it is often in ways that minimize or downplay the human costs of war

    Functional polymorphisms in genes of the Angiotensin and Serotonin systems and risk of hypertrophic cardiomyopathy: AT1R as a potential modifier

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiotensin and serotonin have been identified as inducers of cardiac hypertrophy. DNA polymorphisms at the genes encoding components of the angiotensin and serotonin systems have been associated with the risk of developing cardiovascular diseases, including left ventricular hypertrophy (LVH).</p> <p>Methods</p> <p>We genotyped five polymorphisms of the <it>AGT</it>, <it>ACE</it>, <it>AT1R</it>, <it>5-HT2A</it>, and <it>5-HTT </it>genes in 245 patients with Hypertrophic Cardiomyopathy (HCM; 205 without an identified sarcomeric gene mutation), in 145 patients with LVH secondary to hypertension, and 300 healthy controls.</p> <p>Results</p> <p>We found a significantly higher frequency of <it>AT1R </it>1166 C carriers (CC+AC) among the HCM patients without sarcomeric mutations compared to controls (p = 0.015; OR = 1.56; 95%CI = 1.09-2.23). The <it>AT1R </it>1166 C was also more frequent among patients who had at least one affected relative, compared to sporadic cases. This allele was also associated with higher left ventricular wall thickness in both, HCM patients with and without sarcomeric mutations.</p> <p>Conclusions</p> <p>The 1166 C <it>AT1R </it>allele could be a risk factor for cardiac hypertrophy in patients without sarcomeric mutations. Other variants at the <it>AGT</it>, <it>ACE</it>, <it>5-HT2A </it>and <it>5-HTT </it>did not contribute to the risk of cardiac hypertrophy.</p

    A follow-up study for left ventricular mass on chromosome 12p11 identifies potential candidate genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Left ventricular mass (LVM) is an important risk factor for cardiovascular disease. Previously we found evidence for linkage to chromosome 12p11 in Dominican families, with a significant increase in a subset of families with high average waist circumference (WC). In the present study, we use association analysis to further study the genetic effect on LVM.</p> <p>Methods</p> <p>Association analysis with LVM was done in the one LOD critical region of the linkage peak in an independent sample of 897 Caribbean Hispanics. Genotype data were available on 7085 SNPs from 23 to 53 MB on chromosome 12p11. Adjustment was made for vascular risk factors and population substructure using an additive genetic model. Subset analysis by WC was performed to test for a difference in genetic effects between the high and low WC subsets.</p> <p>Results</p> <p>In the overall analysis, the most significant association was found to rs10743465, downstream of the <it>SOX5 </it>gene (p = 1.27E-05). Also, 19 additional SNPs had nominal p < 0.001. In the subset analysis, the most significant difference in genetic effect between those with high and low WC occurred with rs1157480 (p = 1.37E-04 for the difference in β coefficients), located upstream of <it>TMTC1</it>. Twelve additional SNPs in or near 6 genes had p < 0.001.</p> <p>Conclusions</p> <p>The current study supports previously identified evidence by linkage for a genetic effect on LVM on chromosome 12p11 using association analysis in population-based Caribbean Hispanic cohort. <it>SOX5 </it>may play an important role in the regulation of LVM. An interaction of <it>TMTC1 </it>with abdominal obesity may contribute to phenotypic variation of LVM.</p

    ACC/AHA/ASNC Guidelines for the Clinical Use of Cardiac Radionuclide Imaging—Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging)44The ACC/AHA Task Force on Practice Guidelines makes every effort to avoid any actual or potential conflicts of interest that might arise as a result of an outside relationship or personal interest of a member of the writing panel. Specifically, all members of the writing panel are asked to provide disclosure statements of all such relationships that might be perceived as real or potential conflicts of interest. These statements are reviewed by the parent task force, reported orally to all members of the writing panel at the first meeting, and updated as changes occur.55This document was approved by the American College of Cardiology Foundation Board of Trustees in July, 2003, the American Heart Association Science Advisory and Coordinating Committee in July, 2003, and the American Society of Nuclear Cardiology Board of Directors in July, 2003.66When citing this document, the American College of Cardiology Foundation, the American Heart Association, and the American Society of Nuclear Cardiology request that the following citation format be used: Klocke FJ, Baird MG, Bateman TM, Berman DS, Carabello BA, Cerqueira MD, DeMaria AN, Kennedy JW, Lorell BH, Messer JV, O’Gara PT, Russell RO Jr, St. John Sutton MG, Udelson JE, Verani MS, Williams KA. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Radionuclide Imaging). J Am Coll Cardiol 2003;42:1318–33.77(J Am Coll Cardiol 2003;42:1318–33)88©2003 by the American College of Cardiology Foundation and the American Heart Association, Inc.

    Get PDF

    Cardiovascular magnetic resonance in pericardial diseases

    Get PDF
    The pericardium and pericardial diseases in particular have received, in contrast to other topics in the field of cardiology, relatively limited interest. Today, despite improved knowledge of pathophysiology of pericardial diseases and the availability of a wide spectrum of diagnostic tools, the diagnostic challenge remains. Not only the clinical presentation may be atypical, mimicking other cardiac, pulmonary or pleural diseases; in developed countries a shift for instance in the epidemiology of constrictive pericarditis has been noted. Accurate decision making is crucial taking into account the significant morbidity and mortality caused by complicated pericardial diseases, and the potential benefit of therapeutic interventions. Imaging herein has an important role, and cardiovascular magnetic resonance (CMR) is definitely one of the most versatile modalities to study the pericardium. It fuses excellent anatomic detail and tissue characterization with accurate evaluation of cardiac function and assessment of the haemodynamic consequences of pericardial constraint on cardiac filling. This review focuses on the current state of knowledge how CMR can be used to study the most common pericardial diseases
    • …
    corecore