293 research outputs found

    Sensory Analysis of Sweet Musts in Pedro Ximenez cv. Grapes Dried using Different Methods

    Get PDF
    The sensory properties of musts from Pedro Ximenez grapes chamber-dried at 40 or 50°C, with or withouta dipping treatment, are compared to musts from grapes subjected to the traditional sun-drying methodused in the production of sweet wines. The chamber-dried procedure, specifically at 50°C, decreased thedrying time, improved the health status of the grapes relative to the growth of fungi that produce toxins andyielded must with a very similar color to that of sun-dried grapes. Sensory evaluation has shown that mustfrom grapes dried at 50°C, after treatment with an alkaline emulsion of ethyl oleate, is unacceptable dueto the light color. The musts receiving the highest scores for color, aroma and flavor were from untreatedgrapes dried at 50ºC or potassium carbonate-treated grapes dried at the same temperature. However, thetreatment did not significantly accelerate drying

    Characterisation of the Colour Fraction of Pedro Ximenez Andalusian Sweet Wines

    Get PDF
    Changes in colour fraction of commercially bottled Pedro Ximenez sweet wines, unaged and oxidatively agedin American oak casks and mostly produced in the Montilla-Moriles and Jerez-Xérès-Sherry Designations ofOrigin (Spain), have been studied. The total tannin content and the total polyphenol content (A280) increasedwith increased aging time, a trend clearly observed in the Jerez wines. Browning, as measured by the absorbanceat 420 nm, differed markedly between unaged and aged wines. Aged wines showed an increase in browning withtime and an increase in high molecular weight browning compounds, most probably Maillard compounds.Colour measurements based on the CIELab system showed a gradual decrease in hue and lightness with ageing

    Melatonin-doped polymeric nanoparticles induce high crystalline apatite formation in root dentin

    Get PDF
    This work was funded by the Ministry of Economy and Competitiveness and European Regional Development Fund( MINECO/AEI/FEDER/UE) Project number PID2020-114694RBI00. Funding for open access charge: University of Granada / CBUA.Objective. To investigate the effect of novel polymeric nanoparticles (NPs) doped with melatonin (ML) on nano-hardness, crystallinity and ultrastructure of the formed hydroxyapatite after endodontic treatment. Methods. Undoped-NPs and ML-doped NPs (ML-NPs) were tested at radicular dentin, after 24 h and 6 m. A control group without NPs was included. Radicular cervical and apical dentin surfaces were studied by nano-hardness measurements, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and StudentNewman-Keuls multiple comparisons (p < 0.05). Results. Cervical dentin treated with undoped NPs maintained its nano-hardness values after 6 m of storage being [24 h: 0.29 (0.01); 6 m: 0.30 (0.02) GPa], but it decreased at apical dentin [24 h: 0.36 (0.01); 6 m: 0.28 (0.02) GPa]. When ML-NPs were used, nano-hardness was similar over time [24h: 0.31 (0.02); 6 m: 0.28 (0.03) GPa], at apical dentin. Root dentin treated with ML-NPs produced, in general, high crystallinity of new minerals and thicker crystals than those produced in the rest of the groups. After 6 m, crystals became organized in randomly oriented polyhedral, square polygonal block-like apatite or drop-like apatite polycrystalline lattices when ML-NPs were used. Undoped NPs generated poor crystallinity, with preferred orientation of small crystallite and increased microstrain. Significance. New polycrystalline formations encountered in dentin treated with ML-NPs may produce structural dentin stability and high mechanical performance at the root. The decrease of mechanical properties over time in dentin treated without NPs indicates scarce remineralization potential, dentin demineralization and further potential degradation. The amorphous stage may provide high hydroxyapatite solubility and remineralizing activity.Ministry of Economy and Competitiveness and European Regional Development Fund( MINECO/AEI/FEDER/UE) PID2020-114694RB-I00University of Granada/CBU

    La dieta como punto de partida para la adquisición de competencias

    Get PDF
    Se ha utilizado la dieta de nuestros alumnos como punto de partida para que éstos desarrollen una serie de competencias. Por una parte, se ha pretendido el fomento del trabajo en grupo, la búsqueda de información en bases de datos no habituales en el mundo científico, y la presentación adecuada de resultados. Los alumnos han recopilado datos acerca de la composición, la funcionalidad y la aportación energética de los alimentos de su dieta diaria, tanto de los componentes principales (carbohidratos, proteínas, lípidos, vitaminas y minerales), como de los aditivos alimentarios utilizados en la Industria Agroalimentaria. Además, los alumnos con este trabajo han podido desarrollar las competencias de igualdad de género y comprobar que la dieta no depende del género de la persona, sino más bien de los hábitos personales. Asimismo, los alumnos han demostrado que la alimentación de los estudiantes universitarios no es adecuada y sería necesario realizar programas de salud para fomentar una mejor alimentación

    Comparison of ALBAYZIN query-by-example spoken term detection 2012 and 2014 evaluations

    Get PDF
    Query-by-example spoken term detection (QbE STD) aims at retrieving data from a speech repository given an acoustic query containing the term of interest as input. Nowadays, it is receiving much interest due to the large volume of multimedia information. This paper presents the systems submitted to the ALBAYZIN QbE STD 2014 evaluation held as a part of the ALBAYZIN 2014 Evaluation campaign within the context of the IberSPEECH 2014 conference. This is the second QbE STD evaluation in Spanish, which allows us to evaluate the progress in this technology for this language. The evaluation consists in retrieving the speech files that contain the input queries, indicating the start and end times where the input queries were found, along with a score value that reflects the confidence given to the detection of the query. Evaluation is conducted on a Spanish spontaneous speech database containing a set of talks from workshops, which amount to about 7 h of speech. We present the database, the evaluation metric, the systems submitted to the evaluation, the results, and compare this second evaluation with the first ALBAYZIN QbE STD evaluation held in 2012. Four different research groups took part in the evaluations held in 2012 and 2014. In 2014, new multi-word and foreign queries were added to the single-word and in-language queries used in 2012. Systems submitted to the second evaluation are hybrid systems which integrate letter transcription- and template matching-based systems. Despite the significant improvement obtained by the systems submitted to this second evaluation compared to those of the first evaluation, results still show the difficulty of this task and indicate that there is still room for improvement.This research was funded by the Spanish Government ('SpeechTech4All Project' TEC2012 38939 C03 01 and 'CMC-V2 Project' TEC2012 37585 C02 01), the Galician Government through the research contract GRC2014/024 (Modalidade: Grupos de Referencia Competitiva 2014) and 'AtlantTIC Project' CN2012/160, and also by the Spanish Government and the European Regional Development Fund (ERDF) under project TACTICA

    Analyzing training dependencies and posterior fusion in discriminant classification of apnoea patients based on sustained and connected speech

    Get PDF
    We present a novel approach using both sustained vowels and connected speech, to detect obstructive sleep apnea (OSA) cases within a homogeneous group of speakers. The proposed scheme is based on state-of-the-art GMM-based classifiers, and acknowledges specifically the way in which acoustic models are trained on standard databases, as well as the complexity of the resulting models and their adaptation to specific data. Our experimental database contains a suitable number of utterances and sustained speech from healthy (i.e control) and OSA Spanish speakers. Finally, a 25.1% relative reduction in classification error is achieved when fusing continuous and sustained speech classifiers. Index Terms: obstructive sleep apnea (OSA), gaussian mixture models (GMMs), background model (BM), classifier fusion

    Design of a multimodal database for research on automatic detection of severe apnoea cases

    Get PDF
    The aim of this paper is to present the design of a multimodal database suitable for research on new possibilities for automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases can be very useful to give priority to their early treatment optimizing the expensive and time-consuming tests of current diagnosis methods based on full overnight sleep in a hospital. This work is part of an on-going collaborative project between medical and signal processing groups towards the design of a multimodal database as an innovative resource to promote new research efforts on automatic OSA diagnosis through speech and image processing technologies. In this contribution we present the multimodal design criteria derived from the analysis of specific voice properties related to OSA physiological effects as well as from the morphological facial characteristics in apnoea patients. Details on the database structure and data collection methodology are also given as it is intended to be an open resource to promote further research in this field. Finally, preliminary experimental results on automatic OSA voice assessment are presented for the collected speech data in our OSA multimodal database. Standard GMM speaker recognition techniques obtain an overall correct classification rate of 82%. This represents an initial promising result underlining the interest of this research framework and opening further perspectives for improvement using more specific speech and image recognition technologies

    Knockdown of BACE1-AS Nonprotein-Coding Transcript Modulates Beta-Amyloid-Related Hippocampal Neurogenesis

    Get PDF
    Background. Alzheimer's disease (AD) is a devastating neurological disorder and the main cause of dementia in the elderly population worldwide. Adult neurogenesis appears to be upregulated very early in AD pathogenesis in response to some specific aggregates of beta-amyloid (Aβ) peptides, exhausting the neuronal stem cell pools in the brain. Previously, we characterized a conserved nonprotein-coding antisense transcript for β-secretase-1 (BACE1), a critical enzyme in AD pathophysiology. We showed that the BACE1-antisense transcript (BACE1-AS) is markedly upregulated in brain samples from AD patients and promotes the stability of the (sense) BACE1 transcript. In the current paper, we examine the relationship between BACE1, BACE1-AS, adult neurogenesis markers, and amyloid plaque formation in amyloid precursor protein (APP) transgenic mice (Tg-19959) of various ages. Results. Consistent with previous publications in other APP overexpressing mouse models, we found adult neurogenesis markers to be noticeably upregulated in Tg-19959 mice very early in the development of the disease. Knockdown of either one of BACE1 or BACE1-AS transcripts by continuous infusion of locked nucleic acid- (LNA-) modified siRNAs into the third ventricle over the period of two weeks caused concordant downregulation of both transcripts in Tg-19959 mice. Downregulation of BACE1 mRNA was followed by reduction of BACE1 protein and insoluble Aβ. Modulation of BACE1 and BACE1-AS transcripts also altered oligomeric Aβ aggregation pattern, which was in turn associated with an increase in neurogenesis markers at the RNA and protein level. Conclusion. We found alterations in the RNA and protein concentrations of several adult neurogenesis markers, as well as non-protein-coding BACE1-AS transcripts, in parallel with the course of β-amyloid synthesis and aggregation in the brain of Tg15999 mice. In addition, by knocking down BACE1 or BACE1-AS (thereby reducing Aβ production and plaque deposition), we were able to modulate expression of these neurogenesis markers. Our findings suggest a distortion of adult neurogenesis that is associated with Aβ production very early in amyloid pathogenesis. We believe that these alterations, at the molecular level, could prove useful as novel therapeutic targets and/or as early biomarkers of AD

    Peripheral myeloid-derived suppressor cells are good biomarkers of the efficacy of fingolimod in multiple sclerosis

    Get PDF
    Personalized medicine; Responder and non-responderMedicina personalizada; Respondedor y no respondedorMedicina personalitzada; Contestador i no contestadorBackground The increasing number of treatments that are now available to manage patients with multiple sclerosis (MS) highlights the need to develop biomarkers that can be used within the framework of individualized medicine. Fingolimod is a disease-modifying treatment that belongs to the sphingosine-1-phosphate receptor modulators. In addition to inhibiting T cell egress from lymph nodes, fingolimod promotes the immunosuppressive activity of myeloid-derived suppressor cells (MDSCs), whose monocytic subset (M-MDSCs) can be used as a biomarker of disease severity, as well as the degree of demyelination and extent of axonal damage in the experimental autoimmune encephalomyelitis (EAE) model of MS. In the present study, we have assessed whether the abundance of circulating M-MDSCs may represent a useful biomarker of fingolimod efficacy in EAE and in the clinical context of MS patients. Methods Treatment with vehicle or fingolimod was orally administered to EAE mice for 14 days in an individualized manner, starting the day when each mouse began to develop clinical signs. Peripheral blood from EAE mice was collected previous to treatment and human peripheral blood mononuclear cells (PBMCs) were collected from fingolimod to treat MS patients’ peripheral blood. In both cases, M-MDSCs abundance was analyzed by flow cytometry and its relationship with the future clinical affectation of each individual animal or patient was assessed. Results Fingolimod-treated animals presented a milder EAE course with less demyelination and axonal damage, although a few animals did not respond well to treatment and they invariably had fewer M-MDSCs prior to initiating the treatment. Remarkably, M-MDSC abundance was also found to be an important and specific parameter to distinguish EAE mice prone to better fingolimod efficacy. Finally, in a translational effort, M-MDSCs were quantified in MS patients at baseline and correlated with different clinical parameters after 12 months of fingolimod treatment. M-MDSCs at baseline were highly representative of a good therapeutic response to fingolimod, i.e., patients who met at least two of the criteria used to define non-evidence of disease activity-3 (NEDA-3) 12 months after treatment. Conclusion Our data indicate that M-MDSCs might be a useful predictive biomarker of the response of MS patients to fingolimod.This work was supported by the Instituto de Salud Carlos III (PI18/00357, RD16-0015/0019, PI21/00302, all co-funded by the European Union), the Fundación Merck Salud (FMS_2020_MS), Esclerosis Múltiple España (REEM-EME-S5 and REEM-EME_2018), ADEMTO, ATORDEM and AELEM. CC-T holds a predoctoral fellowship from the Instituto de Salud Carlos III (FI19/00132, co-funded by the European Union). LC and JG-A were hired under PI18/00357 and RD16/0015/0019, respectively. DC, MCO and IM-D were hired by SESCAM

    ALBAYZIN Query-by-example Spoken Term Detection 2016 evaluation

    Get PDF
    [EN] Query-by-example Spoken Term Detection (QbE STD) aims to retrieve data from a speech repository given an acoustic (spoken) query containing the term of interest as the input. This paper presents the systems submitted to the ALBAYZIN QbE STD 2016 Evaluation held as a part of the ALBAYZIN 2016 Evaluation Campaign at the IberSPEECH 2016 conference. Special attention was given to the evaluation design so that a thorough post-analysis of the main results could be carried out. Two different Spanish speech databases, which cover different acoustic and language domains, were used in the evaluation: the MAVIR database, which consists of a set of talks from workshops, and the EPIC database, which consists of a set of European Parliament sessions in Spanish. We present the evaluation design, both databases, the evaluation metric, the systems submitted to the evaluation, the results, and a thorough analysis and discussion. Four different research groups participated in the evaluation, and a total of eight template matching-based systems were submitted. We compare the systems submitted to the evaluation and make an in-depth analysis based on some properties of the spoken queries, such as query length, single-word/multi-word queries, and in-language/out-of-language queries.This work was partially supported by Fundacao para a Ciencia e Tecnologia (FCT) under the projects UID/EEA/50008/2013 (pluriannual funding in the scope of the LETSREAD project) and UID/CEC/50021/2013, and Grant SFRH/BD/97187/2013. Jorge Proenca is supported by the SFRH/BD/97204/2013 FCT Grant. This work was also supported by the Galician Government ('Centro singular de investigacion de Galicia' accreditation 2016-2019 ED431G/01 and the research contract GRC2014/024 (Modalidade: Grupos de Referencia Competitiva 2014)), the European Regional Development Fund (ERDF), the projects "DSSL: Redes Profundas y Modelos de Subespacios para Deteccion y Seguimiento de Locutor, Idioma y Enfermedades Degenerativas a partir de la Voz" (TEC2015-68172-C2-1-P) and the TIN2015-64282-R funded by Ministerio de Economia y Competitividad in Spain, the Spanish Government through the project "TraceThem" (TEC2015-65345-P), and AtlantTIC ED431G/04.Tejedor, J.; Toledano, DT.; Lopez-Otero, P.; Docio-Fernandez, L.; Proença, J.; Perdigão, F.; García-Granada, F.... (2018). ALBAYZIN Query-by-example Spoken Term Detection 2016 evaluation. EURASIP Journal on Audio, Speech and Music Processing. 1-25. https://doi.org/10.1186/s13636-018-0125-9S125Jarina, R, Kuba, M, Gubka, R, Chmulik, M, Paralic, M (2013). UNIZA system for the spoken web search task at MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 791–792).Ali, A, & Clements, MA (2013). Spoken web search using and ergodic hidden Markov model of speech. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 861–862).Buzo, A, Cucu, H, Burileanu, C (2014). SpeeD@MediaEval 2014: Spoken term detection with robust multilingual phone recognition. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 721–722).Caranica, A, Buzo, A, Cucu, H, Burileanu, C (2015). SpeeD@MediaEval 2015: Multilingual phone recognition approach to Query By Example STD. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 781–783).Kesiraju, S, Mantena, G, Prahallad, K (2014). IIIT-H system for MediaEval 2014 QUESST. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 761–762).Ma, M, & Rosenberg, A (2015). CUNY systems for the Query-by-Example search on speech task at MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 831–833).Takahashi, J, Hashimoto, T, Konno, R, Sugawara, S, Ouchi, K, Oshima, S, Akyu, T, Itoh, Y (2014). An IWAPU STD system for OOV query terms and spoken queries. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 384–389).Makino, M, & Kai, A (2014). Combining subword and state-level dissimilarity measures for improved spoken term detection in NTCIR-11 SpokenQuery & Doc task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 413–418).Konno, R, Ouchi, K, Obara, M, Shimizu, Y, Chiba, T, Hirota, T, Itoh, Y (2016). An STD system using multiple STD results and multiple rescoring method for NTCIR-12 SpokenQuery & Doc task. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 200–204).Sakamoto, N, Yamamoto, K, Nakagawa, S (2015). Combination of syllable based N-gram search and word search for spoken term detection through spoken queries and IV/OOV classification. In Proc. of ASRU. IEEE, New York, (pp. 200–206).Hou, J, Pham, VT, Leung, C-C, Wang, L, 2, HX, Lv, H, Xie, L, Fu, Z, Ni, C, Xiao, X, Chen, H, Zhang, S, Sun, S, Yuan, Y, Li, P, Nwe, TL, Sivadas, S, Ma, B, Chng, ES, Li, H (2015). The NNI Query-by-Example system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 141–143).Vavrek, J, Viszlay, P, Lojka, M, Pleva, M, Juhar, J, Rusko, M (2015). TUKE at MediaEval 2015 QUESST. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 451–453).Mantena, G, Achanta, S, Prahallad, K (2014). Query-by-example spoken term detection using frequency domain linear prediction and non-segmental dynamic time warping. IEEE/ACM Transactions on Audio, Speech and Language Processing, 22(5), 946–955.Anguera, X, & Ferrarons, M (2013). Memory efficient subsequence DTW for query-by-example spoken term detection. In Proc. of ICME. IEEE, New York, (pp. 1–6).Tulsiani, H, & Rao, P (2015). The IIT-B Query-by-Example system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 341–343).Bouallegue, M, Senay, G, Morchid, M, Matrouf, D, Linares, G, Dufour, R (2013). LIA@MediaEval 2013 spoken web search task: An I-Vector based approach. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 771–772).Rodriguez-Fuentes, LJ, Varona, A, Penagarikano, M, Bordel, G, Diez, M (2013). GTTS systems for the SWS task at MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 831–832).Wang, H, Lee, T, Leung, C-C, Ma, B, Li, H (2013). Using parallel tokenizers with DTW matrix combination for low-resource spoken term detection. In Proc. of ICASSP. IEEE, New York, (pp. 8545–8549).Wang, H, & Lee, T (2013). The CUHK spoken web search system for MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 681–682).Proenca, J, Veiga, A, Perdigão, F (2014). The SPL-IT query by example search on speech system for MediaEval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 741–742).Proenca, J, Veiga, A, Perdigao, F (2015). Query by example search with segmented dynamic time warping for non-exact spoken queries. In Proc. of EUSIPCO. Springer, Berlin, (pp. 1691–1695).Proenca, J, Castela, L, Perdigao, F (2015). The SPL-IT-UC Query by Example search on speech system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 471–473).Proenca, J, & Perdigao, F (2016). Segmented dynamic time warping for spoken Query-by-Example search. In Proc. of Interspeech. ISCA, Baixas, (pp. 750–754).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2015). GTM-UVigo systems for the Query-by-Example search on speech task at MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 521–523).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2015). Phonetic unit selection for cross-lingual Query-by-Example spoken term detection. In Proc. of ASRU. IEEE, New York, (pp. 223–229).Saxena, A, & Yegnanarayana, B (2015). Distinctive feature based representation of speech for Query-by-Example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 3680–3684).Skacel, M, & Szöke, I (2015). BUT QUESST 2015 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 721–723).Chen, H, Leung, C-C, Xie, L, Ma, B, Li, H (2016). Unsupervised bottleneck features for low-resource Query-by-Example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 923–927).Yuan, Y, Leung, C-C, Xie, L, Chen, H, Ma, B, Li, H (2017). Pairwise learning using multi-lingual bottleneck features for low-resource Query-by-Example spoken term detection. In Proc. of ICASSP. IEEE, New York, (pp. 5645–5649).Torbati, AHHN, & Picone, J (2016). A nonparametric Bayesian approach for spoken term detection by example query. In Proc. of Interspeech. ISCA, Baixas, (pp. 928–932).Popli, A, & Kumar, A (2015). Query-by-example spoken term detection using low dimensional posteriorgrams motivated by articulatory classes. In Proc. of MMSP. IEEE, New York, (pp. 1–6).Yang, P, Leung, C-C, Xie, L, Ma, B, Li, H (2014). Intrinsic spectral analysis based on temporal context features for query-by-example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 1722–1726).George, B, Saxena, A, Mantena, G, Prahallad, K, Yegnanarayana, B (2014). Unsupervised query-by-example spoken term detection using bag of acoustic words and non-segmental dynamic time warping. In Proc. of Interspeech. ISCA, Baixas, (pp. 1742–1746).Hazen, TJ, Shen, W, White, CM (2009). Query-by-example spoken term detection using phonetic posteriorgram templates. In Proc. of ASRU. IEEE, New York, (pp. 421–426).Abad, A, Astudillo, RF, Trancoso, I (2013). The L2F spoken web search system for mediaeval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 851–852).Szöke, I, Skácel, M, Burget, L (2014). BUT QUESST 2014 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 621–622).Szöke, I, Burget, L, Grézl, F, Černocký, JH, Ondel, L (2014). Calibration and fusion of query-by-example systems - BUT SWS 2013. In Proc. of ICASSP. IEEE, New York, (pp. 621–622).Abad, A, Rodríguez-Fuentes, LJ, Penagarikano, M, Varona, A, Bordel, G (2013). On the calibration and fusion of heterogeneous spoken term detection systems. In Proc. of Interspeech. ISCA, Baixas, (pp. 20–24).Yang, P, Xu, H, Xiao, X, Xie, L, Leung, C-C, Chen, H, Yu, J, Lv, H, Wang, L, Leow, SJ, Ma, B, Chng, ES, Li, H (2014). The NNI query-by-example system for MediaEval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 691–692).Leung, C-C, Wang, L, Xu, H, Hou, J, Pham, VT, Lv, H, Xie, L, Xiao, X, Ni, C, Ma, B, Chng, ES, Li, H (2016). Toward high-performance language-independent Query-by-Example spoken term detection for MediaEval 2015: Post-evaluation analysis. In Proc. of Interspeech. ISCA, Baixas, (pp. 3703–3707).Xu, H, Hou, J, Xiao, X, Pham, VT, Leung, C-C, Wang, L, Do, VH, Lv, H, Xie, L, Ma, B, Chng, ES, Li, H (2016). Approximate search of audio queries by using DTW with phone time boundary and data augmentation. In Proc. of ICASSP. IEEE, New York, (pp. 6030–6034).Oishi, S, Matsuba, T, Makino, M, Kai, A (2016). Combining state-level and DNN-based acoustic matches for efficient spoken term detection in NTCIR-12 SpokenQuery &Doc-2 task. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 205–210).Oishi, S, Matsuba, T, Makino, M, Kai, A (2016). Combining state-level spotting and posterior-based acoustic match for improved query-by-example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 740–744).Obara, M, Kojima, K, Tanaka, K, Lee, S-w, Itoh, Y (2016). Rescoring by combination of posteriorgram score and subword-matching score for use in Query-by-Example. In Proc. of Interspeech. ISCA, Baixas, (pp. 1918–1922).NIST. The Ninth Text REtrieval Conference (TREC 9). http://trec.nist.gov . Accessed Feb 2018.Anguera, X, Rodriguez-Fuentes, LJ, Szöke, I, Buzo, A, Metze, F (2014). Query by Example Search on Speech at Mediaeval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 351–352).Joho, H, & Kishida, K (2014). Overview of the NTCIR-11 SpokenQuery&Doc Task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 1–7).NIST. Draft KWS16 Keyword Search Evaluation Plan. https://www.nist.gov/sites/default/files/documents/itl/iad/mig/KWS16-evalplan-v04.pdf . Accessed Feb 2018.Anguera, X, Metze, F, Buzo, A, Szöke, I, Rodriguez-Fuentes, LJ (2013). The spoken web search task. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 921–922).Taras, B, & Nadeu, C (2011). Audio segmentation of broadcast news in the Albayzin-2010 evaluation: overview, results, and discussion. EURASIP Journal on Audio, Speech, and Music Processing, 2011(1), 1–10.Zelenák, M, Schulz, H, Hernando, J (2012). Speaker diarization of broadcast news in Albayzin 2010 evaluation campaign. EURASIP Journal on Audio, Speech, and Music Processing, 2012(19), 1–9.Rodríguez-Fuentes, LJ, Penagarikano, M, Varona, A, Díez, M, Bordel, G (2011). The Albayzin 2010 Language Recognition Evaluation. In Proc. of Interspeech. ISCA, Baixas, (pp. 1529–1532).Tejedor, J, Toledano, DT, Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C, Cardenal, A, Echeverry-Correa, JD, Coucheiro-Limeres, A, Olcoz, J, Miguel, A (2015). Spoken term detection ALBAYZIN 2014 evaluation: overview, systems, results, and discussion. EURASIP, Journal on Audio, Speech and Music Processing, 2015(21), 1–27.Tejedor, J, Toledano, DT, Anguera, X, Varona, A, Hurtado, LF, Miguel, A, Colás, J (2013). Query-by-example spoken term detection ALBAYZIN 2012 evaluation: overview, systems, results, and discussion. EURASIP, Journal on Audio, Speech, and Music Processing, 2013(23), 1–17.Tejedor, J, Toledano, DT, Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). Comparison of ALBAYZIN query-by-example spoken term detection 2012 and 2014 evaluations. EURASIP, Journal on Audio, Speech and Music Processing, 2016(1), 1–19.Méndez, F, Docío, L, Arza, M, Campillo, F (2010). The Albayzin 2010 text-to-speech evaluation. In Proc. of FALA. UniversidadeVigo, Vigo, (pp. 317–340).Billa, J, Ma, KW, McDonough, JW, Zavaliagkos, G, Miller, DR, Ross, KN, El-Jaroudi, A (1997). Multilingual speech recognition: the 1996 Byblos Callhome system. In Proc. of Eurospeech. ISCA, Baixas, (pp. 363–366).Killer, M, Stuker, S, Schultz, T (2003). Grapheme based speech recognition. In Proc. of Eurospeech. ISCA, Baixas, (pp. 3141–3144).Burget, L, Schwarz, P, Agarwal, M, Akyazi, P, Feng, K, Ghoshal, A, Glembek, O, Goel, N, Karafiat, M, Povey, D, Rastrow, A, Rose, RC, Thomas, S (2010). Multilingual acoustic modeling for speech recognition based on subspace gaussian mixture models. In Proc. of ICASSP. IEEE, New York, (pp. 4334–4337).Cuayahuitl, H, & Serridge, B (2002). Out-of-vocabulary word modeling and rejection for Spanish keyword spotting systems. In Proc. of MICAI. Springer, Berlin, (pp. 156–165).Tejedor, J (2009). Contributions to keyword spotting and spoken term detection for information retrieval in audio mining. PhD thesis, Universidad Autónoma de Madrid, Madrid, Spain.Tejedor, J, Toledano, DT, Wang, D, King, S, Colás, J (2014). Feature analysis for discriminative confidence estimation in spoken term detection. Computer Speech and Language, 28(5), 1083–1114.Li, J, Wang, X, Xu, B (2014). An empirical study of multilingual and low-resource spoken term detection using deep neural networks. In Proc. of Interspeech. ISCA, Baixas, (pp. 1747–1751).NIST. The Spoken Term Detection (STD) 2006 evaluation plan. http://berlin.csie.ntnu.edu.tw/Courses/Special%20Topics%20in%20Spoken%20Language%20Processing/Lectures2008/SLP2008S-Lecture12-Spoken%20Term%20Detection.pdf . Accessed Feb 2018.Fiscus, JG, Ajot, J, Garofolo, JS, Doddingtion, G (2007). Results of the 2006 spoken term detection evaluation. In Proc. of SSCS. ACM, New York, (pp. 45–50).Martin, A, Doddington, G, Kamm, T, Ordowski, M, Przybocki, M (1997). The DET curve in assessment of detection task performance. In Proc. of Eurospeech. ISCA, Baixas, (pp. 1895–1898).NIST. Evaluation Toolkit (STDEval) software. https://www.nist.gov/itl/iad/mig/tools . Accessed Feb 2018.Union, IT. ITU-T Recommendation P.563: Single-ended method for objective speech quality assessment in narrow-band telephony applications. http://www.itu.int/rec/T-REC-P.563/en . Accessed Feb 2018.Rajput, N, & Metze, F (2011). Spoken web search. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 1–2).Metze, F, Barnard, E, Davel, M, van Heerden, C, Anguera, X, Gravier, G, Rajput, N (2012). The spoken web search task. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 41–42).Szöke, I, Rodriguez-Fuentes, LJ, Buzo, A, Anguera, X, Metze, F, Proenca, J, Lojka, M, Xiong, X (2015). Query by Example Search on Speech at Mediaeval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 81–82).Szöke, I, & Anguera, X (2016). Zero-cost speech recognition task at Mediaeval 2016. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 81–82).Akiba, T, Nishizaki, H, Nanjo, H, Jones, GJF (2014). Overview of the NTCIR-11 spokenquery &doc task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 1–15).Akiba, T, Nishizaki, H, Nanjo, H, Jones, GJF (2016). Overview of the NTCIR-12 spokenquery &doc-2. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 1–13).Schwarz, P (2008). Phoneme recognition based on long temporal context. PhD thesis, FIT, BUT, Brno, Czech Republic.Varona, A, Penagarikano, M, Rodríguez-Fuentes, LJ, Bordel, G (2011). On the use of lattices of time-synchronous cross-decoder phone co-occurrences in a SVM-phonotactic language recognition system. In Proc. of Interspeech. ISCA, Baixas, (pp. 2901–2904).Eyben, F, Wollmer, M, Schuller, B (2010). OpenSMILE—the munich versatile and fast open-source audio feature extractor. In Proc. of ACM Multimedia (MM). ACM, New York, (pp. 1459–1462).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). Finding relevant features for zero-resource query-by-example search on speech. Speech Communication, 84(1), 24–35.Zhang, Y, & Glass, JR (2009). Unsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgrams. In Proc. of ASRU. IEEE, New York, (pp. 398–403).Povey, D, Ghoshal, A, Boulianne, G, Burget, L, Glembek, O, Goel, N, Hannemann, M, Motlicek, P, Qian, Y, Schwarz, P, Silovsky, J, Stemmer, G, Vesely, K (2011). The KALDI speech recognition toolkit. In Proc. of ASRU. IEEE, New York, (pp. 1–4).Muller, M. (2007). Information retrieval for music and motion. New York: Springer.Szöke, I, Skacel, M, Burget, L (2014). BUT QUESST 2014 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 621–622).Brümmer, N, & van Leeuwen, D (2006). On calibration of language recognition scores. In Proc of the IEEE Odyssey: The speaker and language recognition workshop. IEEE, New York, (pp. 1–8).Brümmer, N, & de Villiers, E. The BOSARIS toolkit user guide: Theory, algorithms and code for binary classifier score processing. Technical report. https://sites.google.com/site/nikobrummer . Accessed Feb 2018.Meinedo, H, & Neto, J (2005). A stream-based audio segmentation, classification and clustering pre-processing system for broadcast news using ANN models. In Proc. of Interspeech. ISCA, Baixas, (pp. 237–240).Morgan, N, & Bourlard, H (1995). An introduction to hybrid HMM/connectionist continuous speech recognition. IEEE Signal Processing Magazine, 12(3), 25–42.Meinedo, H, Abad, A, Pellegrini, T, Trancoso, I, Neto, J (2010). The L2F broadcast news speech recognition system. In Proc. of FALA. UniversidadeVigo, Vigo, (pp. 93–96).Abad, A, Luque, J, Trancoso, I (2011). Parallel transformation network features for speaker recognition. In Proc. of ICASSP. IEEE, New York, (pp. 5300–5303).Diez, M, Varona, A, Penagarikano, M, Rodriguez-Fuentes, LJ, Bordel, G (2012). On the use of phone log-likelihood ratios as features in spoken language recognition. In Proc. of SLT. IEEE, New York, (pp. 274–279).Diez, M, Varona, A, Penagarikano, M, Rodriguez-Fuentes, LJ, Bordel, G (2014). New insight into the use of phone log-likelihood ratios as features for language recognition. In Proc. of Interspeech. ISCA, Baixas, (pp. 1841–1845).Abad, A, Ribeiro, E, Kepler, F, Astudillo, R, Trancoso, I (2016). Exploiting phone log-likelihood ratio features for the detection of the native language of non-native English speakers. In Proc. of Interspeech. ISCA, Baixas, (pp. 2413–2417).Rodríguez-Fuentes, LJ, Varona, A, Peñagarikano, M, Bordel, G, Díez, M (2014). High-performance query-by-example spoken term detection on the SWS 2013 evaluation. In Proc. of ICASSP. IEEE, New York, (pp. 7819–7823).Vesely, K, Ghoshal, A, Burget, L, Povey, D (2013). Sequence-discriminative training of deep neural networks. In Proc. of Interspeech. ISCA, Baixas, (pp. 2345–2349).Ghahremani, P, BabaAli, B, Povey, D, Riedhammer, K, Trmal, J, Khudanpur, S (2014). A pitch extraction algorithm tuned for automatic speech recognition. In Proc. of ICASSP. IEEE, New York, (pp. 2494–2498).Povey, D, Hannemann, M, Boulianne, G, Burget, L, Ghoshal, A, Janda, M, Karafiat, M, Kombrink, S, Motlicek, P, Qian, Y, Riedhammer, K, Vesely, K, Vu, NT (2012). Generating exact lattices in the WFST framework. In Proc. of ICASSP. IEEE, New York, (pp. 4213–4216).Garcia-Mateo, C, Dieguez-Tirado, J, Docio-Fernandez, L, Cardenal-Lopez, A (2004). Transcrigal: A bilingual system for automatic indexing of broadcast news. In Proc. of LREC. ELRA, Paris, (pp. 2061–2064).Stolcke, A (2002). SRILM—an extensible language modeling toolkit. In Proc. of Interspeech. ISCA, Baixas, (pp. 901–904).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). GTM-UVigo systems for Albayzin 2016 search on speech evaluation. In Proc. of Iberspeech. Springer, Berlin, (pp. 65–74).Chen, G, Khudanpur, S, Povey, D, Trmal, J, Yarowsky, D, Yilmaz, O (2013). Quantifying the value of pronunciation lexicons for keyword search in low resource languages. In Proc. of ICASSP. IEEE, New York, (pp. 8560–8564).Pham, VT, Chen, NF, Sivadas, S, Xu, H, Chen, I-F, Ni, C, Chng, ES, Li, H (2014). System and keyword dependent fusion for spoken term detection. In Proc. of SLT. IEEE, New York, (pp. 430–435).Can, D, & Saraclar, M (2011). Lattice indexing for spoken term detection. IEEE Transactions on Audio, Speech and Language Processing, 19(8), 2338–2347.Miller, DRH, K
    corecore