15,330 research outputs found

    International scientific research on venture capital: a bibliometric and mapping analysis from the period 1978–2020

    Get PDF
    The aim of this study is to explore the relevance of scientific production on venture capital using bibliometric and mapping tools.We performed a search in Scopus, involving any document published between 1978 and 2020. We used bibliometric indicators to explore documents production, dispersion, distribution, time of duplication, and annual growth, as Price’s law of scientific literature growth, Lotka’s law, the transient index, and the Bradford model. We also calculated the participation index of the different countries and institutions. Finally, we explored the co-occurrence and thematic networks for the most frequently used terms in venture capital research through bibliometric mapping.A total of 1,230 original articles were collected from the timeframe 1978–2020. The model confirms that Price’s law is not fulfilled. Scientific production was better adjusted to linear growth (r = 0.9290) than exponential (r = 0.9161). Literature on venture capital research has increased its growth in the last 43 years at a rate of 7.9% per year, with a production that doubles its size every 9.1 years. The transience index was 79.91%, which indicates that most of the scientific production is due to a lot of authors with a small number of publications on the research topic. Bradford´s law shows that the scientific production in this area is widely distributed in multiple journals, and Lotka’s law indicates that the author’s distribution is heavily concentrated on small producers. The United States of America (USA) and the University of Pennsylvania present the highest production, contributing 31.22% and 1.63% of the total production of research on venture capital.The venture capital task has undergone a linear growth, with a very high rate of transience, which indicates the presence of numerous authors who sporadically publish on this topic. No evidence of a saturation point was observed in the scientific production analyzed, which makes it possible to conclude that the research in venture capital will continue to be in demand by the scientific community.The aim of this study is to explore the relevance of scientific production on venture capital using bibliometric and mapping tools.We performed a search in Scopus, involving any document published between 1978 and 2020. We used bibliometric indicators to explore documents production, dispersion, distribution, time of duplication, and annual growth, as Price’s law of scientific literature growth, Lotka’s law, the transient index, and the Bradford model. We also calculated the participation index of the different countries and institutions. Finally, we explored the co-occurrence and thematic networks for the most frequently used terms in venture capital research through bibliometric mapping.A total of 1,230 original articles were collected from the timeframe 1978–2020. The model confirms that Price’s law is not fulfilled. Scientific production was better adjusted to linear growth (r = 0.9290) than exponential (r = 0.9161). Literature on venture capital research has increased its growth in the last 43 years at a rate of 7.9% per year, with a production that doubles its size every 9.1 years. The transience index was 79.91%, which indicates that most of the scientific production is due to a lot of authors with a small number of publications on the research topic. Bradford´s law shows that the scientific production in this area is widely distributed in multiple journals, and Lotka’s law indicates that the author’s distribution is heavily concentrated on small producers. The United States of America (USA) and the University of Pennsylvania present the highest production, contributing 31.22% and 1.63% of the total production of research on venture capital.The venture capital task has undergone a linear growth, with a very high rate of transience, which indicates the presence of numerous authors who sporadically publish on this topic. No evidence of a saturation point was observed in the scientific production analyzed, which makes it possible to conclude that the research in venture capital will continue to be in demand by the scientific community

    High spatial resolution and high contrast optical speckle imaging with FASTCAM at the ORM

    Full text link
    In this paper, we present an original observational approach, which combines, for the first time, traditional speckle imaging with image post-processing to obtain in the optical domain diffraction-limited images with high contrast (1e-5) within 0.5 to 2 arcseconds around a bright star. The post-processing step is based on wavelet filtering an has analogy with edge enhancement and high-pass filtering. Our I-band on-sky results with the 2.5-m Nordic Telescope (NOT) and the lucky imaging instrument FASTCAM show that we are able to detect L-type brown dwarf companions around a solar-type star with a contrast DI~12 at 2" and with no use of any coronographic capability, which greatly simplifies the instrumental and hardware approach. This object has been detected from the ground in J and H bands so far only with AO-assisted 8-10 m class telescopes (Gemini, Keck), although more recently detected with small-class telescopes in the K band. Discussing the advantage and disadvantage of the optical regime for the detection of faint intrinsic fluxes close to bright stars, we develop some perspectives for other fields, including the study of dense cores in globular clusters. To the best of our knowledge this is the first time that high contrast considerations are included in optical speckle imaging approach.Comment: Proceedings of SPIE conference - Ground-based and Airborne Instrumentation for Astronomy III (Conference 7735), San Diego 201

    Comparison of hierarchical temporal memories and artificial neural networks under noisy data

    Get PDF
    The ability of two different machine learning approaches to map non-linear problems from experimental data is evaluated under controlled experiments. A well-known machine learning algorithm (Artificial Neural Network) is compared against a new computing paradigm (Hierarchical Temporal Memory) under a controlled scenario. The chosen scenario is the detection of impacts in a cantilever beam under vibration instrumented with fiber Bragg gratings. The main characteristics of both of the machine learning approaches are analyzed while varying environmental parameters such as the number of sensing points and their location. From the achieved results some clues can be extracted regarding dealing with noisy or partial data using different machine learning approaches

    Urea‑functionalized amorphous calcium phosphate nanofertilizers: optimizing the synthetic strategy towards environmental sustainability and manufacturing costs

    Get PDF
    This work has been performed thanks to the funding by Fondazione CARIPLO (Project No. 2016-0648: Romancing the stone: size-controlled HYdroxyaPATItes for sustainable Agriculture – HYPATIA). JMDL acknowledges Spanish Ministry of Science, Innovation and Universities of Spain (MCIU/AEI/FEDER, UE) for funding through the projects NanoVIT (RTI-2018-095794-A-C22) and NanoSmart (RYC-2016-21042). GBRR also acknowledges the Spanish MICIU for her postdoctoral contract within the Juan de la Cierva Program (JdC-2017). Financial support for this work was also provided by the Marie Skłodowska-Curie Standard Fellowships (888972-PSust- MOF, F.J.C.) within the European Union research and innovation framework programme (2014-2020). We thank Prof. Jan Skov Pedersen (Aarhus University, DK) for technical and scientific assistance on SAXS experiments.Nanosized fertilizers are the new frontier of nanotechnology towards a sustainable agriculture. Here, an efficient N-nanofertilizer is obtained by post-synthetic modification (PSM) of nitrate-doped amorphous calcium phosphate (ACP) nanoparticles (NPs) with urea. The unwasteful PSM protocol leads to N-payloads as large as 8.1 w/w%, is well replicated by using inexpensive technical-grade reagents for cost-effective up-scaling and moderately favours urea release slowdown. Using the PSM approach, the N amount is ca. 3 times larger than that obtained in an equivalent one-pot synthesis where urea and nitrate are jointly added during the NPs preparation. In vivo tests on cucumber plants in hydroponic conditions show that N-doped ACP NPs, with half absolute N-content than in conventional urea treatment, promote the formation of an equivalent amount of root and shoot biomass, without nitrogen depletion. The high nitrogen use efficiency (up to 69%) and a cost-effective preparation method support the sustainable real usage of N-doped ACP as a nanofertilizer.Fondazione Cariplo 2016-0648Spanish Ministry of Science, Innovation and Universities of Spain (MCIU/AEI/FEDER, UE) RTI-2018-095794-A-C22 RYC-2016-21042Marie Sklodowska-Curie Standard Fellowships within the European Union research and innovation framework programme (2014-2020) 888972-PSustMOFSpanish MICIU within the Juan de la Cierva Program (JdC-2017

    Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil

    Get PDF
    New packaging materials based on green composite sheets consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and coconut fibers (CFs) were obtained by twin-screw extrusion (TSE) followed by compression molding. The effect of varying the CF weight content, i.e. 1, 3, 5, and 10wt.-%, and the screw speed during melt processing, i.e. 75, 150, and 225rpm, on both the aspect ratio and dispersion of the fibers was analyzed and related to the properties of the compression-molded sheets. Finally, the CFs were impregnated with oregano essential oil (OEO) by an innovative spray coating methodology and then incorporated into PHBV at the optimal processing conditions. The functionalized green composite sheets presented bacteriostatic effect against Staphylococcus aureus from fiber contents as low as 3wt.-%. Therefore, the here-prepared CFs can be successfully applied as natural vehicles to entrap extracts and develop green composites of high interest in active food packaging to provide protection and shelf life extension.This research was funded by the EU H2020 project YPACK (reference number 773872), the Spanish Ministry of Economy and Competitiveness (MINECO) project AGL2015-63855-C2-1-R, the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), and the BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund (ERDF) under the scope of Norte2020 – Programa Operacional Regional do Norte. Prof. Sergio Torres-Giner wants to thank the European Cooperation in Science and Technology (COST) Action FP1405, ActInPak, for financial support during his Short Term Scientific Mission (STSM) at the University of Minho.info:eu-repo/semantics/publishedVersio

    Modal analysis of a scale model of QD0

    Get PDF
    The last focusing magnets of the future Compact Linear Collider (CLIC) are critical elements needed to reach the desired luminosity. Designed to guide the nanometer sized focused beams, they need to be as stiff as possible to avoid any unwanted ground motion vibration amplification. Following our recent study concerning CLIC's ground motion mitigation techniques such as the active seismic isolator, the next step is to build a real scale prototype of the QD0. This mock-up is needed to validate experimentally the proposed control strategy. Such a prototype isn't yet available, hence this first study with a scale model of QD0. In this paper, modal analysis is used to analyze the dynamic characteristics of the structure of the prototype. This analysis identifies mode shapes, frequency and damping parameters. The purpose of this paper is to provide model verification by comparing experimental and theoretical modal analysis. The knowledge of these modes would later allow to validate experimentally ground motion vibration damping on that scale model of QD0, and finally on the real scale mock-up of QD0 by predicting the effect of design change

    Casimir interaction between inclined metallic cylinders

    Full text link
    The Casimir interaction between one-dimensional metallic objects (cylinders, wires) displays unconventional features. Here we study the orientation dependence of this interaction by computing the Casimir energy between two inclined cylinders over a wide range of separations. We consider Dirichlet, Neumann and perfect metal boundary conditions, both at zero temperature and in the classical high temperature limit. For all types of boundary conditions, we find that at large distances the interaction decays slowly with distance, similarly to the case of parallel cylinders, and at small distances scales as the interaction of two spheres (but with different numerical coefficients). Our numerical results at intermediate distances agree with our analytic predictions at small and large separations. Experimental implications are discussed.Comment: 9 pages, 5 figure

    Martian Atmospheric Temperature and Density Profiles During the First Year of NOMAD/TGO Solar Occultation Measurements

    Get PDF
    We present vertical profiles of temperature and density from solar occultation (SO) observations by the “Nadir and Occultation for Mars Discovery” (NOMAD) spectrometer on board the Trace Gas Orbiter during its first operational year, which covered the second half of Mars Year 34. We used calibrated transmittance spectra in 380 scans, and apply an in-house pre-processing to clean data systematics. Temperature and CO2 profiles up to about 90 km, with consistent hydrostatic adjustment, are obtained, after adapting an Earth-tested retrieval scheme to Mars conditions. Both pre-processing and retrieval are discussed to illustrate their performance and robustness. Our results reveal the large impact of the MY34 Global Dust Storm (GDS), which warmed the atmosphere at all altitudes. The large GDS aerosols opacity limited the sounding of tropospheric layers. The retrieved temperatures agree well with global climate models (GCM) at tropospheric altitudes, but NOMAD mesospheric temperatures are wavier and globally colder by 10 K in the perihelion season, particularly during the GDS and its decay phase. We observe a warm layer around 80 km during the Southern Spring, especially in the Northern Hemisphere morning terminator, associated to large thermal tides, significantly stronger than in the GCM. Cold mesospheric pockets, close to CO2 condensation temperatures, are more frequently observed than in the GCM. NOMAD CO2 densities show oscillations upon a seasonal trend that track well the latitudinal variations expected. Results uncertainties and suggestions to improve future data re-analysis are briefly discussed

    Physics and Mathematics of Calogero particles

    Get PDF
    We give a review of the mathematical and physical properties of the celebrated family of Calogero-like models and related spin chains.Comment: Version to appear in Special Issue of Journal of Physics A: Mathematical and Genera
    corecore