100 research outputs found

    The effect of face mask wearing on language processing and emotion recognition in young children

    Get PDF
    Face mask wearing was an important preventative strategy for the transmission of the COVID-19 virus. However, the effects that occluding the mouth and nose area with surgical masks could have on young children’s language processing and emotion recognition skills have received little investigation. To evaluate the possible effects, the current study recruited a sample of 74 children from the North West of England (aged 4–8 years). They completed two computer-based tasks with adults wearing or not wearing surgical face masks to assess (a) language processing skills and (b) emotion recognition ability. To control for individual differences, age, sex, receptive vocabulary, early reading skills, and parent-reported social–emotional competence were included in analyses. The findings from the study highlighted that although younger children were less accurate than older children, face masks did not significantly impair basic language processing ability. However, they had a significant effect on the children’s emotion recognition accuracy—with masked angry faces more easily recognized and masked happy and sad faces less easily recognized. Children’s age and social-emotional skills also played a role. The findings suggest that the effects of face masks should continue to be evaluated

    The Positivity Scale: Concurrent and Factorial Validity Across Late Childhood and Early Adolescence

    Get PDF
    Despite the well-established protective functions of positivity (i.e., a dispositional self-evaluative tendency to view oneself, life, and future under a positive outlook) from middle adolescence to old age, its reliable assessment and contribution to a proper psychological functioning have received little attention during previous developmental phases. In this article, we aimed to evaluate the psychometric properties and construct validity of the eight-item Positivity Scale (P Scale; Caprara et al., 2012) during late childhood and early adolescence in a sample of British students (N = 742; 48% boys) from both primary (Mage = 10.75, SD = 0.52) and secondary schools (Mage = 13.38 years, SD = 0.94). First, results from confirmatory factor analysis (CFA) attested to the plausibility of the hypothesized 1-factor structure of the P Scale in a revised CFA model including the correlation between the residuals of two items similar in their wording. Next, we found evidence for strong (scalar) measurement invariance of the P Scale across late childhood and early adolescence as well as for its concurrent validity as indicated by expected relations of positivity to indicators of adjustment (i.e., prosocial behavior) and maladjustment (i.e., externalizing and internalizing problems). Overall, these findings support the concurrent and factorial validity of the P Scale as a short self-report instrument to measure children’s tendency to view their experience from a positive stance. We discuss the implications of our results for improving the wording of the items composing P Scale as well as for understanding the dispositional mechanisms conducive to psychological health and wellbeing across late childhood and early adolescence

    Diversity of nickel ligands in nodule cytosol, nickel transport, and expression of a nickel-dependent enzyme in endosymbiotic bacteria as affected by the legume host

    Full text link
    Provision of metals to endosymbiotic bacteria represents a potential limitation for metalloenzyme synthesis inside legume nodules. Metal ions are usually bound to organic ligands in the cell cytoplasm, and the nature of such metal-ligand complexes might affect metal availability. We have observed a strong effect of the legume host on hydrogenase synthesis when the same Rhizobium leguminosarum bv. viciae strain establishes a symbiotic interaction with pea (Pisum sativum) or lentil (Lens sculenta) plants. These data, along with the different phenotypes of mutants altered in nickel (Ni) transport in these hosts, suggest a role for the chemical form of Ni on metal provision to the bacteroid. The biochemical analysis of cytosolic fractions of pea and lentil nodules has revealed the different nature and concentration of organic ligands chelating Ni in these host

    Non-destructive production of exosomes loaded with ultrathin Palladium nanosheets for targeted bioorthogonal catalysis

    Get PDF
    The use of exosomes as selective delivery vehicles of therapeutic agents, such as drugs or hyperthermia-capable nanoparticles, is being intensely investigated on account of their preferential tropism toward their parental cells. However, the methods used to introduce a therapeutic load inside exosomes often involve disruption of their membrane, which may jeopardize their targeting capabilities, attributed to their surface integrins. On the other hand, in recent years bio-orthogonal catalysis has emerged as a new tool with a myriad of potential applications in medicine. These bio-orthogonal processes, often based on Pd-catalyzed chemistry, would benefit from systems capable of delivering the catalyst to target cells. It is therefore highly attractive to combine the targeting capabilities of exosomes and the bio-orthogonal potential of Pd nanoparticles to create new therapeutic vectors. In this protocol, we provide detailed information on an efficient procedure to achieve a high load of catalytically active Pd nanosheets inside exosomes, without disrupting their membranes. The protocol involves a multistage process in which exosomes are first harvested, subjected to impregnation with a Pd salt precursor followed by a mild reduction process using gas-phase CO, which acts as both a reducing and growth-directing agent to produce the desired nanosheets. The technology is scalable, and the protocol can be conducted by any researcher having basic biology and chemistry skills in ~3 d.We gratefully acknowledge financial support from the ERC Advanced Grant CADENCE (grant no. ERC-2016-ADG-742684) and the EPSRC (Healthcare Technology Challenge award no. EP/N021134/1). M.S.-A. thanks the Spanish Government for an FPU PhD research fellowship. B.R.-R. thanks the EC (grant no. H2020-MSCA-IF-2014–658833). V.S. acknowledges the financial support of Ministerio de Ciencia, Innovación y Universidades, Programa Retos Investigación, Proyecto REF: RTI2018-099019-A-I00. M.A. acknowledges the financial support of the ERC Consolidator Grant programme (grant no. ERC-2013-CoG-614715). P.M.-D. also thanks Instituto de Salud Carlos III (PI19/01007). We also thank CIBER-BBN, an initiative funded by the VI National R&D&i Plan 2008–2011 financed by the Instituto de Salud Carlos III and by Fondo Europeo de Desarrollo Regional (Feder) ‘Una manera de hacer Europa’, with the assistance of the European Regional Development Fund. This study is also partially funded by the Aragon Government (T57_17R p) cofounded by Feder 2014–2020 ‘Building Europe from Aragon’.Peer reviewe

    In Cellulo Bioorthogonal Catalysis by Encapsulated AuPd Nanoalloys. Overcoming Intracellular Deactivation

    Get PDF
    Bioorthogonal metallocatalysis has opened up a xenobiotic route to perform nonenzymatic catalytic transformations in living settings. Despite their promising features, most metals are deactivated inside cells by a myriad of reactive biomolecules, including biogenic thiols, thereby limiting the catalytic functioning of these abiotic reagents. Here we report the development of cytocompatible alloyed AuPd nanoparticles with the capacity to elicit bioorthogonal depropargylations with high efficiency in biological media. We also show that the intracellular catalytic performance of these nanoalloys is significantly enhanced by protecting them following two different encapsulation methods. Encapsulation in mesoporous silica nanorods resulted in augmented catalyst reactivity, whereas the use of a biodegradable PLGA matrix increased nanoalloy delivery across the cell membrane. The functional potential of encapsulated AuPd was demonstrated by releasing the potent chemotherapy drug paclitaxel inside cancer cells. Nanoalloy encapsulation provides a novel methodology to develop nanoreactors capable of mediating new-to-life reactions in cell

    A 5-FU precursor designed to evade anabolic and catabolic drug pathways and activated by Pd chemistry in vitro and in vivo

    Get PDF
    We are grateful to the EPSRC (EP/N021134/1) for funding. T.L.B. thanks the CMVM of the University of Edinburgh (Principal's scholarship), and B.R.-R. thanks the EC (H2020MSCA-IF-2014-658833, ChemoBOOM) for financial support. A.U.-B. and D.J.B. thank Medical Research Scotland (PHD-1046-2016) for funding. We acknowledge support from the MRC Confidence in Concept scheme (MRC/CIC6/52) and EPSRC Impact Acceleration Account (PIII024).5-Fluorouracil (5-FU) is an antineoplastic antimetabolite that is widely administered to cancer patients by bolus injection, especially to those suffering from colorectal and pancreatic cancer. Because of its suboptimal route of administration and dose-limiting toxicities, diverse 5-FU prodrugs have been developed to confer oral bioavailability and increase the safety profile of 5-FU chemotherapy regimens. Our contribution to this goal is presented herein with the development of a novel palladium-activated prodrug designed to evade the metabolic machinery responsible for 5-FU anabolic activation and catabolic processing. The new prodrug is completely innocuous to cells and highly resistant to metabolization by primary hepatocytes and liver S9 fractions (the main metabolic route for 5-FU degradation), whereas it is rapidly converted into 5-FU in the presence of a palladium (Pd) source. In vivo pharmokinetic analysis shows the prodrug is rapidly and completely absorbed after oral administration and exhibits a longer half-life than 5-FU. In vivo efficacy studies in a xenograft colon cancer model served to prove, for the first time, that orally administered prodrugs can be locally converted to active drugs by intratumorally inserted Pd implants.UK Research & Innovation (UKRI) Engineering & Physical Sciences Research Council (EPSRC) EP/N021134/1CMVM of the University of EdinburghEuropean Commission European Commission Joint Research Centre H2020MSCA-IF-2014-658833Medical Research Scotland PHD-1046-2016UK Research & Innovation (UKRI) Medical Research Council UK (MRC) MRC/CIC6/52 UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) PIII02

    Vascular Inflammation in Subclinical Atherosclerosis Detected by Hybrid PET/MRI

    Get PDF
    BACKGROUND: Atherosclerosis is a chronic inflammatory disease, but data on arterial inflammation at early stages is limited. OBJECTIVES: The purpose of this study was to characterize vascular inflammation by hybrid 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI). METHODS: Carotid, aortic, and ilio-femoral 18F-FDG PET/MRI was performed in 755 individuals (age 40 to 54 years; 83.7% men) with known plaques detected by 2-/3-dimensional vascular ultrasound and/or coronary calcification in the PESA (Progression of Early Subclinical Atherosclerosis) study. The authors evaluated the presence, distribution, and number of arterial inflammatory foci (increased 18F-FDG uptake) and plaques with or without inflammation (coincident 18F-FDG uptake). RESULTS: Arterial inflammation was present in 48.2% of individuals (24.4% femorals, 19.3% aorta, 15.8% carotids, and 9.3% iliacs) and plaques in 90.1% (73.9% femorals, 55.8% iliacs, and 53.1% carotids). 18F-FDG arterial uptakes and plaques significantly increased with cardiovascular risk factors (p < 0.01). Coincident 18F-FDG uptakes were present in 287 of 2,605 (11%) plaques, and most uptakes were detected in plaque-free arterial segments (459 of 746; 61.5%). Plaque burden, defined by plaque presence, number, and volume, was significantly higher in individuals with arterial inflammation than in those without (p < 0.01). The number of plaques and 18F-FDG uptakes showed a positive albeit weak correlation (r = 0.25; p < 0.001). CONCLUSIONS: Arterial inflammation is highly prevalent in middle-aged individuals with known subclinical atherosclerosis. Large-scale multiterritorial PET/MRI allows characterization of atherosclerosis-related arterial inflammation and demonstrates 18F-FDG uptake in plaque-free arterial segments and, less frequently, within plaques. These findings suggest an arterial inflammatory state at early stages of atherosclerosis. (Progression of Early Subclinical Atherosclerosis [PESA]; NCT01410318).The PESA study is cofunded equally by the Centro Nacional de Investigaciones Cardiovasculares (CNIC) and Banco Santander. The study also receives funding from the Instituto de Salud Carlos III (PI15/02019) and the European Regional Development Fund (ERDF) “A way to make Europe.” The CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades, and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). Dr. Sanchez-González is an employee of Philips Healthcare. Dr. Bueno has received research funding from the Instituto de Salud Carlos III, Spain (PIE16/00021 & PI17/01799), AstraZeneca, Bristol-Myers Squibb, Janssen, and Novartis; has received consulting fees from AstraZeneca, Bayer, Bristol-Myers Squibb-Pfizer, and Novartis; and has received speaking fees or support for attending scientific meetings from AstraZeneca, Bayer, Bristol-Myers Squibb-Pfizer, Novartis, and MEDSCAPE-the heart.org.S

    Serum amyloid a1/toll-like receptor-4 Axis, an important link between inflammation and outcome of TBI patients

    Get PDF
    Traumatic brain injury (TBI) is one of the leading causes of mortality and disability world-wide without any validated biomarker or set of biomarkers to help the diagnosis and evaluation of the evolution/prognosis of TBI patients. To achieve this aim, a deeper knowledge of the biochemical and pathophysiological processes triggered after the trauma is essential. Here, we identified the serum amyloid A1 protein-Toll-like receptor 4 (SAA1-TLR4) axis as an important link between inflammation and the outcome of TBI patients. Using serum and mRNA from white blood cells (WBC) of TBI patients, we found a positive correlation between serum SAA1 levels and injury severity, as well as with the 6-month outcome of TBI patients. SAA1 levels also correlate with the presence of TLR4 mRNA in WBC. In vitro, we found that SAA1 contributes to inflammation via TLR4 activation that releases inflammatory cytokines, which in turn increases SAA1 levels, establishing a positive proinflammatory loop. In vivo, post-TBI treatment with the TLR4-antagonist TAK242 reduces SAA1 levels, improves neurobehavioral outcome, and prevents blood–brain barrier disruption. Our data support further evaluation of (i) post-TBI treatment in the presence of TLR4 inhibition for limiting TBI-induced damage and (ii) SAA1-TLR4 as a biomarker of injury progression in TBI patientsThis work was supported by grants from Fundación Mutua Madrileña and Fondo de Investigaciones Sanitarias (FIS) (ISCIII/FEDER) (Programa Miguel Servet CP14/00008; CPII19/00005; PI16/00735; PI19/00082) to JE, RYC2019-026870-I to JMR and PI18/01387 to A

    Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications

    Full text link
    Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425 and PI19/00321), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), European Regional Development Fund (FEDER), the Organización Nacional de Ciegos Españoles (ONCE), Fundación Ramón Areces, Fundación Conchita Rábago and the University Chair UAM-IIS-FJD of Genomic Medicine. Irene Perea-Romero is supported by a PhD fellowship from the predoctoral Program from ISCIII (FI17/00192). Ionut F. Iancu is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017-AI/BMD7256). Marta del Pozo-Valero is supported by a PhD grant from the Fundación Conchita Rábago. Berta Almoguera is supported by a Juan Rodes program from ISCIII (JR17/00020). Pablo Minguez is supported by a Miguel Servet program from ISCIII (CP16/00116). Marta Corton is supported by a Miguel Servet program from ISCIII (CPII17/00006). The funders played no role in study design, data collection, data analysis, manuscript preparation and/or publication decisions

    Polyclonality of Concurrent Natural Populations of Alteromonas macleodii

    Get PDF
    We have analyzed a natural population of the marine bacterium, Alteromonas macleodii, from a single sample of seawater to evaluate the genomic diversity present. We performed full genome sequencing of four isolates and 161 metagenomic fosmid clones, all of which were assigned to A. macleodii by sequence similarity. Out of the four strain genomes, A. macleodii deep ecotype (AltDE1) represented a different genome, whereas AltDE2 and AltDE3 were identical to the previously described AltDE. Although the core genome (∼80%) had an average nucleotide identity of 98.51%, both AltDE and AltDE1 contained flexible genomic islands (fGIs), that is, genomic islands present in both genomes in the same genomic context but having different gene content. Some of the fGIs encode cell surface receptors known to be phage recognition targets, such as the O-chain of the lipopolysaccharide, whereas others have genes involved in physiological traits (e.g., nutrient transport, degradation, and metal resistance) denoting microniche specialization. The presence in metagenomic fosmids of genomic fragments differing from the sequenced strain genomes, together with the presence of new fGIs, indicates that there are at least two more A. macleodii clones present. The availability of three or more sequences overlapping the same genomic region also allowed us to estimate the frequency and distribution of recombination events among these different clones, indicating that these clustered near the genomic islands. The results indicate that this natural A. macleodii population has multiple clones with a potential for different phage susceptibility and exploitation of resources, within a seemingly unstructured habitat
    corecore