5,803 research outputs found

    Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat

    Get PDF
    AbstractTwenty elite varieties of wheat (Triticum aestivum L.), primarily winter wheat, were grown with low and high supplies of nitrogen (N) in a field experiment at Rothamsted, southern England, in the season 2004–05. The aim was to quantify genetic variation in the uptake, partitioning and remobilisation of N in individual plant organs at extreme rates of N supply. The biggest contibutor to variation in plant and crop performance was ‘N-rate’ followed by ‘growth stage’ and then ‘genotype’. At both N-rates, there was significant genetic variation in crop performance (grain yield, grain %N, total N-uptake and post-anthesis N-uptake), and in N contents of individual organs at anthesis and maturity, and in N remobilised from individual vegetative organs to the grain during grain-fill. Nitrogen was remobilised from all vegetative organs with very high levels of efficiency by all varieties (80–85%). Stem-N was a major N pool at anthesis probably due to the amounts of soluble N compounds in transit in the vascular system at this time. Despite the genetic variation in N-related plant parameters including stem-N, there were no strong correlations with grain yield and grain %N at a given N-rate. This was probably due to the narrow gene pool employed in this single-season study

    Probing Unstable Massive Neutrinos with Current Cosmic Microwave Background Observations

    Get PDF
    The pattern of anisotropies in the Cosmic Microwave Background depends upon the masses and lifetimes of the three neutrino species. A neutrino species of mass greater than 10 eV with lifetime between 10^{13} sec and 10^{17} sec leaves a very distinct signature (due to the integrated Sachs-Wolfe effect): the anisotropies at large angles are predicted to be comparable to those on degree scales. Present data exclude such a possibility and hence this region of parameter space. For mΜ≃30m_\nu \simeq 30 eV, τ≃1013\tau \simeq 10^{13} sec, we find an interesting possibility: the Integrated Sachs Wolfe peak produced by the decaying neutrino in low-Ω\Omega models mimics the acoustic peak expected in an Ω=1\Omega = 1 model.Comment: 5 pages, 4 figure

    Brany Liouville Inflation

    Get PDF
    We present a specific model for cosmological inflation driven by the Liouville field in a non-critical supersymmetric string framework, in which the departure from criticality is due to open strings stretched between the two moving Type-II 5-branes. We use WMAP and other data on fluctuations in the cosmic microwave background to fix parameters of the model, such as the relative separation and velocity of the 5-branes, respecting also the constraints imposed by data on light propagation from distant gamma-ray bursters. The model also suggests a small, relaxing component in the present vacuum energy that may accommodate the breaking of supersymmetry.Comment: 23 pages LATEX, two eps figures incorporated; version accepted for publication in NJ

    COrE (Cosmic Origins Explorer) A White Paper

    Full text link
    COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently proposed to ESA within Cosmic Vision 2015-2025. COrE will provide maps of the microwave sky in polarization and temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and sensitivities roughly 10 to 30 times better than PLANCK (depending on the frequency channel). The COrE mission will lead to breakthrough science in a wide range of areas, ranging from primordial cosmology to galactic and extragalactic science. COrE is designed to detect the primordial gravitational waves generated during the epoch of cosmic inflation at more than 3σ3\sigma for r=(T/S)>=10−3r=(T/S)>=10^{-3}. It will also measure the CMB gravitational lensing deflection power spectrum to the cosmic variance limit on all linear scales, allowing us to probe absolute neutrino masses better than laboratory experiments and down to plausible values suggested by the neutrino oscillation data. COrE will also search for primordial non-Gaussianity with significant improvements over Planck in its ability to constrain the shape (and amplitude) of non-Gaussianity. In the areas of galactic and extragalactic science, in its highest frequency channels COrE will provide maps of the galactic polarized dust emission allowing us to map the galactic magnetic field in areas of diffuse emission not otherwise accessible to probe the initial conditions for star formation. COrE will also map the galactic synchrotron emission thirty times better than PLANCK. This White Paper reviews the COrE science program, our simulations on foreground subtraction, and the proposed instrumental configuration.Comment: 90 pages Latex 15 figures (revised 28 April 2011, references added, minor errors corrected

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200
    • 

    corecore