588 research outputs found
EDGE: a code to calculate diffusion of cosmic-ray electrons and their gamma-ray emission
The positron excess measured by PAMELA and AMS can only be explained if there
is one or several sources injecting them. Moreover, at the highest energies, it
requires the presence of nearby (hundreds of parsecs) and middle age
(maximum of hundreds of kyr) source. Pulsars, as factories of electrons
and positrons, are one of the proposed candidates to explain the origin of this
excess. To calculate the contribution of these sources to the electron and
positron flux at the Earth, we developed EDGE (Electron Diffusion and Gamma
rays to the Earth), a code to treat diffusion of electrons and compute their
diffusion from a central source with a flexible injection spectrum. We can
derive the source's gamma-ray spectrum, spatial extension, the all-electron
density in space and the electron and positron flux reaching the Earth. We
present in this contribution the fundamentals of the code and study how
different parameters affect the gamma-ray spectrum of a source and the electron
flux measured at the Earth.Comment: Presented at the 35th International Cosmic Ray Conference (ICRC2017),
Bexco, Busan, Kore
The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in
the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent
a series of upgrades, involving the exchange of the MAGIC-I camera and its
trigger system, as well as the upgrade of the readout system of both
telescopes. We use observations of the Crab Nebula taken at low and medium
zenith angles to assess the key performance parameters of the MAGIC stereo
system. For low zenith angle observations, the standard trigger threshold of
the MAGIC telescopes is ~50GeV. The integral sensitivity for point-like sources
with Crab Nebula-like spectrum above 220GeV is (0.66+/-0.03)% of Crab Nebula
flux in 50 h of observations. The angular resolution, defined as the sigma of a
2-dimensional Gaussian distribution, at those energies is < 0.07 degree, while
the energy resolution is 16%. We also re-evaluate the effect of the systematic
uncertainty on the data taken with the MAGIC telescopes after the upgrade. We
estimate that the systematic uncertainties can be divided in the following
components: < 15% in energy scale, 11-18% in flux normalization and +/-0.15 for
the energy spectrum power-law slope.Comment: 21 pages, 25 figures, accepted for publication in Astroparticle
Physic
Multi-Wavelength Observations of the Blazar 1ES 1011+496 in Spring 2008
The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays
by MAGIC in spring 2007. Before that the source was little studied in different
wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in
spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio
observatory, Bell and KVA optical telescopes and the Swift and AGILE
satellites. MAGIC observations span from March to May, 2008 for a total of 27.9
hours, of which 19.4 hours remained after quality cuts. The light curve showed
no significant variability. The differential VHE spectrum could be described
with a power-law function. Both results were similar to those obtained during
the discovery. Swift XRT observations revealed an X-ray flare, characterized by
a harder when brighter trend, as is typical for high synchrotron peak BL Lac
objects (HBL). Strong optical variability was found during the campaign, but no
conclusion on the connection between the optical and VHE gamma-ray bands could
be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike
concluded in previous work based on nonsimultaneous data, and is well described
by a standard one zone synchrotron self Compton model. We also performed a
study on the source classification. While the optical and X-ray data taken
during our campaign show typical characteristics of an HBL, we suggest, based
on archival data, that 1ES 1011+496 is actually a borderline case between
intermediate and high synchrotron peak frequency BL Lac objects.Comment: 13 pages, accepted for publication in MNRA
Probing the very-high-energy gamma-ray spectral curvature in the blazar PG 1553+113 with the MAGIC telescopes
PG 1553+113 is a very-high-energy (VHE, ) -ray
emitter classified as a BL Lac object. Its redshift is constrained by
intergalactic absorption lines in the range . The MAGIC telescopes
have monitored the source's activity since 2005. In early 2012, PG 1553+113 was
found in a high-state, and later, in April of the same year, the source reached
its highest VHE flux state detected so far. Simultaneous observations carried
out in X-rays during 2012 April show similar flaring behaviour. In contrast,
the -ray flux at observed by Fermi-LAT is
compatible with steady emission. In this paper, a detailed study of the flaring
state is presented. The VHE spectrum shows clear curvature, being well fitted
either by a power law with an exponential cut-off or by a log-parabola. A
simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE
-ray spectrum is rejected with a high significance (fit probability
P=2.6 ). The observed curvature is compatible with the
extragalactic background light (EBL) imprint predicted by current generation
EBL models assuming a redshift . New constraints on the redshift are
derived from the VHE spectrum. These constraints are compatible with previous
limits and suggest that the source is most likely located around the optical
lower limit, , based on the detection of Ly absorption. Finally,
we find that the synchrotron self-Compton (SSC) model gives a satisfactory
description of the observed multi-wavelength spectral energy distribution
during the flare.Comment: 13 pages, 7 figures, accepted for publication in MNRA
Evaluation of procalcitonin for diagnosis of neonatal sepsis of vertical transmission
BACKGROUND: The results of recent studies suggest the usefulness of PCT for early diagnosis of neonatal sepsis, with varying results. The aim of this prospective multicenter study was to determine the behavior of serum PCT concentrations in both uninfected and infected neonates, and to assess the value of this marker for diagnosis of neonatal sepsis of vertical transmission. METHODS: PCT was measured in 827 blood samples collected prospectively from 317 neonates admitted to 13 acute-care teaching hospitals in Spain over one year. Serum PCT concentrations were determined by a specific immunoluminometric assay. The diagnostic efficacy of PCT at birth and within 12–24 h and 36–48 h of life was evaluated calculating the sensitivity, specificity, and likelihood ratio of positive and negative results. RESULTS: 169 asymptomatic newborns and 148 symptomatic newborns (confirmed vertical sepsis: 31, vertical clinical sepsis: 38, non-infectious diseases: 79) were studied. In asymptomatic neonates, PCT values at 12–24 h were significantly higher than at birth and at 36–48 h of life. Resuscitation at birth and chorioamnionitis were independently associated to PCT values. Neonates with confirmed vertical sepsis showed significantly higher PCT values than those with clinical sepsis. PCT thresholds for the diagnosis of sepsis were 0.55 ng/mL at birth (sensitivity 75.4%, specificity 72.3%); 4.7 ng/mL within 12–24 h of life (sensitivity 73.8%, specificity 80.8%); and 1.7 ng/mL within 36–48 h of life (sensitivity 77.6%, specificity 79.2%). CONCLUSION: Serum PCT was moderately useful for the detection of sepsis of vertical transmission, and its reliability as a maker of bacterial infection requires specific cutoff values for each evaluation point over the first 48 h of life
The 2HWC HAWC Observatory Gamma Ray Catalog
We present the first catalog of TeV gamma-ray sources realized with the
recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the
most sensitive wide field-of-view TeV telescope currently in operation, with a
1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an
instantaneous field of view >1.5 sr and >90% duty cycle, it continuously
surveys and monitors the sky for gamma ray energies between hundreds GeV and
tens of TeV.
HAWC is located in Mexico at a latitude of 19 degree North and was completed
in March 2015. Here, we present the 2HWC catalog, which is the result of the
first source search realized with the complete HAWC detector. Realized with 507
days of data and represents the most sensitive TeV survey to date for such a
large fraction of the sky. A total of 39 sources were detected, with an
expected contamination of 0.5 due to background fluctuation. Out of these
sources, 16 are more than one degree away from any previously reported TeV
source. The source list, including the position measurement, spectrum
measurement, and uncertainties, is reported. Seven of the detected sources may
be associated with pulsar wind nebulae, two with supernova remnants, two with
blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa
Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT
Studying the temporal variability of BL Lac objects at the highest energies
provides unique insights into the extreme physical processes occurring in
relativistic jets and in the vicinity of super-massive black holes. To this
end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in
the high (HE, 100 MeV 200 GeV)
gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE
light curve in the quiescent state is consistent with a log-normal behavior.
The VHE variability in this state is well described by flicker noise
(power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales
larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives
consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10
days) compatible with the VHE findings. The HE and VHE power spectral densities
show a scale invariance across the probed time ranges. A direct linear
correlation between the VHE and HE fluxes could neither be excluded nor firmly
established. These long-term-variability properties are discussed and compared
to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during
VHE-flaring states. The difference in power spectral noise behavior at VHE
energies during quiescent and flaring states provides evidence that these
states are influenced by different physical processes, while the compatibility
of the HE and VHE long-term results is suggestive of a common physical link as
it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure
Cell Culture Replication of a Genotype 1b Hepatitis C Virus Isolate Cloned from a Patient Who Underwent Liver Transplantation
The introduction of the genotype 2a isolate JFH1 was a major breakthrough in the field of hepatitis C virus (HCV), allowing researchers to study the complete life cycle of the virus in cell culture. However, fully competent culture systems encompassing the most therapeutically relevant HCV genotypes are still lacking, especially for the highly drug-resistant genotype 1b. For most isolated HCV clones, efficient replication in cultured hepatoma cells requires the introduction of replication-enhancing mutations. However, such mutations may interfere with viral assembly, as occurs in the case of the genotype 1b isolate Con1. In this study, we show that a clinical serum carrying a genotype 1b virus with an exceptionally high viral load was able to infect Huh7.5 cells. Similar to previous reports, inoculation of Huh7.5 cells by natural virus is very inefficient compared to infection by cell culture HCV. A consensus sequence of a new genotype 1b HCV isolate was cloned from the clinical serum (designated Barcelona HCV1), and then subjected to replication studies. This virus replicated poorly in a transient fashion in Huh7.5 cells after electroporation with in vitro transcribed RNA. Nonetheless, approximately 3 weeks post electroporation and thereafter, core protein-positive cells were detected by immunofluorescence. Surprisingly, small amounts of core protein were also measurable in the supernatant of electroporated cells, suggesting that HCV particles might be assembled and released. Our findings not only enhance the current method of cloning in vitro HCV replication-competent isolates, but also offer valuable insights for the realization of fully competent culture systems for HCV
- …