13 research outputs found

    Crystal Structure of the Apo and the ADP-Bound Form of Choline Kinase from Plasmodium falciparum

    Get PDF
    Among the malaria-causing parasites, the deadliest isPlasmodium falciparum, which accounts for the majority of the fatalities. As the infection progresses inside erythrocytes, major cellular and metabolic changes take place. For its own growth, the parasite relies on the accumulation of phospholipids, which are essential for membrane synthesis. Within the Kennedy pathway, theP. falciparumcholine kinase (PfChoK) has a central role in the biosynthesis of phosphatidylcholine and its selective inhibition leads to the parasite arrest and eradication. Here, we report the crystal structure of the apo and the ADP-bound form of choline kinase fromPlasmodium falciparumat 2.0 and 2.2 angstrom resolution, respectively. These new structural data will facilitate the implementation of effective structure-based drug development strategies against PfChoK in the fight against malaria

    New Compounds with Bioisosteric Replacement of Classic Choline Kinase Inhibitors Show Potent Antiplasmodial Activity

    Get PDF
    In the fight against Malaria, new strategies need to be developed to avoid resistance of the parasite to pharmaceutics and other prevention barriers. Recently, a Host Directed Therapy approach based on the suppression of the starting materials uptake from the host by the parasite has provided excellent results. In this article, we propose the synthesis of bioisosteric compounds that are capable of inhibiting Plasmodium falciparum Choline Kinase and therefore to reduce choline uptake, which is essential for the development of the parasite. Of the 41 bioisosteric compounds reported herein, none showed any influence of the linker on the antimalarial and enzyme inhibitory activity, whereas an effect of the type of cationic heads used could be observed. SARs determined that the thienopyrimidine substituted in 4 by a pyrrolidine is the best scaffold, independently of the chosen linker. The decrease in lipophilicity seems to improve the antimalarial activity but to cause an opposite effect on the inhibition of the enzyme. While potent compounds with similar good inhibitory values have been related to the proposed mechanism of action, some of them still show discrepancies and further studies are needed to determine their specific molecular target

    3-hydroxy-L-kynurenamine is an immunomodulatory biogenic amine

    Get PDF
    Tryptophan catabolism is a major metabolic pathway utilized by several professional and non-professional antigen presenting cells to maintain immunological tolerance. Here we report that 3-hydroxy-l-kynurenamine (3-HKA) is a biogenic amine produced via an alternative pathway of tryptophan metabolism. In vitro, 3-HKA has an anti-inflammatory profile by inhibiting the IFN-gamma mediated STAT1/NF-kappa Beta pathway in both mouse and human dendritic cells (DCs) with a consequent decrease in the release of pro-inflammatory chemokines and cytokines, most notably TNF, IL-6, and IL12p70. 3-HKA has protective effects in an experimental mouse model of psoriasis by decreasing skin thickness, erythema, scaling and fissuring, reducing TNF, IL-1 beta, IFN-gamma, and IL-17 production, and inhibiting generation of effector CD8(+) T cells. Similarly, in a mouse model of nephrotoxic nephritis, besides reducing inflammatory cytokines, 3-HKA improves proteinuria and serum urea nitrogen, overall ameliorating immune-mediated glomerulonephritis and renal dysfunction. Overall, we propose that this biogenic amine is a crucial component of tryptophan-mediated immune tolerance. 3-hydroxy-L-kynurenamine (3-HKA) is a metabolite deriving from a lateral pathway of tryptophan catabolism. Here the authors identify 3-HKA as a biogenic amine and show it has anti-inflammatory properties that can protect mice against psoriasis and nephrotoxic nephritis.Peer reviewe

    Synthesis and biological evaluation of alpha-bromoacryloylamido indolyl pyridinyl propenones as potent apoptotic inducers in human leukaemia cells

    Get PDF
    The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. To investigate the influence of the position of the pyridine nitrogen on biological activity, two different series of α-bromoacryloylamido indolyl pyridinyl propenones 3a-h and 4a-d were designed and synthesized by a pharmacophore hybridization approach and evaluated for their antiproliferative activity against a panel of six human cancer cell lines. These hybrid molecules were prepared to combine the α-bromoacryloyl moiety with two series of indole-inspired chalcone analogues, possessing an indole derivative and a 3- or 4-pyridine ring, respectively, linked on either side of 2-propen-1-one system. The structure-activity relationship was also investigated by the insertion of alkyl or benzyl moieties at the N-1 position of the indole nucleus. We found that most of the newly synthesized displayed high antiproliferative activity against U-937, MOLT-3, K-562, and NALM-6 leukaemia cell lines, with one-digit to double-digit nanomolar IC50values. The antiproliferative activities of 3-pyridinyl derivatives 3f-h revealed that N-benzyl indole analogues generally exhibited lower activity compared to N-H or N-alkyl derivatives 3a-b and 3c-e, respectively. Moreover, cellular mechanism studies elucidated that compound 4a induced apoptosis along with a decrease of mitochondrial membrane potential and activated caspase-3 in a concentration-dependent manner

    Design, synthesis and biological evaluation of 3-substituted-2-oxindole hybrid derivatives as novel anticancer agents

    No full text
    The 2-oxindole nucleus is the central core to develop new anticancer agents and its substitution at the 3-position can effect antitumor activity. Utilizing a pharmacophore hybridization approach, a novel series of antiproliferative agents was obtained by the modification of the structure of 3-substituted-2-oxindole pharmacophore by the attachment of the α-bromoacryloyl moiety, acting as a Michael acceptor, at the 5-position of 2-oxindole framework. The impact of the substituent at the 3-position of 2-oxindole core on the potency and selectivity against a panel of seven different cancer cell lines was examined. We found that these hybrid molecules displayed potent antiproliferative activity against a panel of four cancer cell lines, with one-to double digit nanomolar 50% inhibitory concentrations (IC50). A distinctive selective antiproliferative activity was obtained towards CCRF-CEM and RS4; 11 leukemic cell lines. In order to study the possible mechanism of action, we observed that the two most active compounds namely 3(E) and 6(Z) strongly induce apoptosis that follow the mitochondrial pathway. Interestingly a decrease of intracellular reduced glutathione content (GSH) and reactive oxygen species (ROS) production was detected in treated cells compared with controls suggesting that these effects may be involved in their mechanism of action

    Synthesis, biological evaluation, in silico modeling and crystallization of novel small monocationic molecules with potent antiproliferative activity by dual mechanism

    No full text
    Seeking for new anticancer drugs with strong antiproliferative activity and simple molecular structure, we designed a novel series of compounds based on our previous reported pharmacophore model composed of five moieties. Antiproliferative assays on four tumoral cell lines and evaluation of Human Choline Kinase CK\u3b11 enzymatic activity was performed for these compounds. Among tested molecules, those ones with biphenyl spacer showed betters enzymatic and antiproliferative activities (n-v). Docking and crystallization studies validate the hypothesis and confirm the results. The most active compound (t) induces a significant arrest of the cell cycle in G0/G1 phase that ultimately lead to apoptosis, following the mitochondrial pathway, as demonstrated for other choline kinase inhibitors. However additional assays reveal that the inhibition of choline uptake could also be involved in the antiproliferative outcome of this class of compounds

    Synthesis and biological evaluation of alpha-bromoacryloylamido indolyl pyridinyl propenones as potent apoptotic inducers in human leukaemia cells

    Get PDF
    <p>The combination of two pharmacophores into a single molecule represents one of the methods that can be adopted for the synthesis of new anticancer molecules. To investigate the influence of the position of the pyridine nitrogen on biological activity, two different series of α-bromoacryloylamido indolyl pyridinyl propenones <b>3a–h</b> and <b>4a–d</b> were designed and synthesized by a pharmacophore hybridization approach and evaluated for their antiproliferative activity against a panel of six human cancer cell lines. These hybrid molecules were prepared to combine the α-bromoacryloyl moiety with two series of indole-inspired chalcone analogues, possessing an indole derivative and a 3- or 4-pyridine ring, respectively, linked on either side of 2-propen-1-one system. The structure-activity relationship was also investigated by the insertion of alkyl or benzyl moieties at the <i>N-</i>1 position of the indole nucleus. We found that most of the newly synthesized displayed high antiproliferative activity against U-937, MOLT-3, K-562, and NALM-6 leukaemia cell lines, with one-digit to double-digit nanomolar IC<sub>50</sub> values. The antiproliferative activities of 3-pyridinyl derivatives <b>3f–h</b> revealed that <i>N</i>-benzyl indole analogues generally exhibited lower activity compared to <i>N</i>-H or <i>N</i>-alkyl derivatives <b>3a–b</b> and <b>3c–e</b>, respectively. Moreover, cellular mechanism studies elucidated that compound <b>4a</b> induced apoptosis along with a decrease of mitochondrial membrane potential and activated caspase-3 in a concentration-dependent manner.</p

    New Compounds with Bioisosteric Replacement of Classic Choline Kinase Inhibitors Show Potent Antiplasmodial Activity

    No full text
    In the fight against Malaria, new strategies need to be developed to avoid resistance of the parasite to pharmaceutics and other prevention barriers. Recently, a Host Directed Therapy approach based on the suppression of the starting materials uptake from the host by the parasite has provided excellent results. In this article, we propose the synthesis of bioisosteric compounds that are capable of inhibiting Plasmodium falciparum Choline Kinase and therefore to reduce choline uptake, which is essential for the development of the parasite. Of the 41 bioisosteric compounds reported herein, none showed any influence of the linker on the antimalarial and enzyme inhibitory activity, whereas an effect of the type of cationic heads used could be observed. SARs determined that the thienopyrimidine substituted in 4 by a pyrrolidine is the best scaffold, independently of the chosen linker. The decrease in lipophilicity seems to improve the antimalarial activity but to cause an opposite effect on the inhibition of the enzyme. While potent compounds with similar good inhibitory values have been related to the proposed mechanism of action, some of them still show discrepancies and further studies are needed to determine their specific molecular target

    2-Alkoxycarbonyl-3-arylamino-5-substituted thiophenes as a novel class of antimicrotubule agents: Design, synthesis, cell growth and tubulin polymerization inhibition

    Get PDF
    Microtubules are recognized as crucial components of the mitotic spindle during cell division, and, for this reason, the microtubule system is an attractive target for the development of anticancer agents. Continuing our search strategy for novel tubulin targeting-compounds, a new series of 2-alkoxycarbonyl-3-(3â\u80²,4â\u80²,5â\u80²-trimethoxyanilino)-5-aryl/heteroarylthiophene derivatives was designed, synthesized and demonstrated to act as tubulin polymerization inhibitors at the colchicine site. A structure-activity relationship study on the phenyl at the 5-position of the thiophene ring was performed by introducing a variety of substituents containing electron-releasing and electron-withdrawing groups, with the 2-alkoxycarbonyl-3-(3â\u80²,4â\u80²,5â\u80²-trimethoxyanilino)thiophene scaffold being the minimum structural requirement for activity. Of the tested compounds, derivatives 4a, 4c, 4i and 4k possessed the highest overall potency and displayed high antiproliferative activities at submicromolar concentrations, with IC50values ranging from 0.13 to 0.84 μM against four different cancer cell lines. Three agents (4a, 4c and 4i) in the present series had similar effects, and these were comparable to those of the reference compound combretastatin A-4 (CA-4) as inhibitors of tubulin assembly. The antitubulin effects correlated with the cytostatic activities and indicate that these compounds inhibit cell growth through inhibition of tubulin polymerization by binding at the colchicine site. Compound 4c, containing the 2â\u80²-thienyl ring at the 5-position of the 2-methoxycarbonyl-3-(3â\u80²,4â\u80²,5â\u80²-trimethoxyanilino)thiophene scaffold, exhibited substantial antiproliferative activity with a mean IC50value of 140 nM, inhibited tubulin polymerization with an IC50value of 1.2 μM, similar to that of CA-4 (IC50: 1.1 μM), and induced apoptosis in HeLa cells
    corecore