36 research outputs found

    Sensitivity to gait improvement after levodopa intake in Parkinson’s disease: A comparison study among synthetic kinematic indices

    Get PDF
    The synthetic indices are widely used to describe balance and stability during gait. Some of these are employed to describe the gait features in Parkinson's disease (PD). However, the results are sometimes inconsistent, and the same indices are rarely used to compare the individuals affected by PD before and after levodopa intake (OFF and ON condition, respectively). Our aim was to investigate which synthetic measure among Harmonic Ratio, Jerk Ratio, Golden Ratio and Trunk Displacement Index is representative of gait stability and harmony, and which of these are more sensitive to the variations between OFF and ON condition. We found that all indices, except the Jerk Ratio, significantly improve after levodopa. Only the improvement of the Trunk Displacement Index showed a direct correlation with the motor improvement measured through the clinical scale UPDRS-III (Unified Parkinson's Disease Rating Scale-part III). In conclusion, we suggest that the synthetic indices can be useful to detect motor changes induced by, but not all of them clearly correlate with the clinical changes achieved with the levodopa administration. In our analysis, only the Trunk Displacement Index was able to show a clear relationship with the PD clinical motor improvement

    Brain fingerprint changes across the menstrual cycle correlate with emotional state

    Get PDF
    Background Menstrual cycle (MC) is the cyclical phenomenon with the greatest impact on women's mood and behavior. To date, little is known about the potential mechanism and neuroanatomical correlates of behavioral and emotional fluctuations across the MC. Brain connectome fingerprinting, a recently introduced technique in the field of brain network analysis, represents a valid approach in assessing the subject-specific connectivity and in predicting clinical impairment in several neurological diseases. Nevertheless, its performance, and clinical utility, in healthy individuals has not yet been investigated. Methods We conducted the Clinical Connectome Fingerprint (CCF) analysis on source-reconstructed magnetoencephalography signals in a cohort of 24 women across the MC. Results All the parameters of identifiability did not differ according to the MC phases. The periovulatory and mid-luteal phases showed a less stable, more variable over time, brain connectome compared to the early follicular phase. This difference in brain connectome stability (especially in the posterior brain regions) was able to significantly predict self-esteem, wellbeing, and mood. Conclusion These results confirm the high reliability of the CCF and its independence from the MC phases and, at the same time, provide neuroanatomical correlates of the emotional and mood aspects that change across the MC

    Brain flexibility increases during the peri-ovulatory phase of the menstrual cycle

    Get PDF
    The brain operates in a flexible dynamic regime, generating complex patterns of activity (i.e neuronal avalanches). This study aimed to describe how brain dynamics change according to menstrual cycle (MC) phases. Brain activation patterns were estimated from resting state magnetoencephalography (MEG) scans, acquired women at early follicular (T1), peri-ovulatory (T2) and mid-luteal (T3) phases of MC. We investigated the functional repertoire (number of ways in which large bursts of activity spread through the brain) and the region-specific influence on large-scale dynamics across MC. Finally, we assessed the relationship between sex hormones and changes in brain dynamics. A significantly larger number of visited configuration patterns, in T2 than in T1, in the beta frequency band was observed. No relationship between changes in brain dynamics and sex hormones was showed. Finally, we showed that, in the beta band, the left posterior cingulate gyrus and the right insula were more present in the functional repertoire in T2 than in T1, while the right pallidum was more present in T1 than in T2. In summary, we showed a hormone independent increase of brain dynamics during the ovulatory phase. Moreover, we demonstrated that several specific brain regions play a key role in determining this change

    Boosting effect of regular sport practice in young adults: Preliminary results on cognitive and emotional abilities

    Get PDF
    Several studies have shown that physical exercise (PE) improves behavior and cognitive functioning, reducing the risk of various neurological diseases, protecting the brain from the detrimental effects of aging, facilitating body recovery after injuries, and enhancing self-efficacy and self-esteem. Emotion processing and regulation abilities are also widely acknowledged to be key to success in sports. In this study, we aim to prove that regular participation in sports enhances cognitive and emotional functioning in healthy individuals. A sample of 60 students (mean age = 22.12; SD = 2.40; M = 30), divided into sportive and sedentary, were subjected to a neuropsychological tests battery to assess their overall cognitive abilities (Raven's Advanced Progressive Matrices, APM), verbal and graphic fluency (Word Fluency Task and modified Five Point Test, m-FPT), as well as their emotional awareness skills (Toronto Alexithymia Scale, TAS-20). Our results showed that sportive students performed better than sedentary ones in all cognitive tasks. Regarding emotional processing abilities, significant differences were found in the TAS-20 total score as well as in the Difficulty Describing Feelings (DDF) subscale and the Difficulty Identifying Feeling (DIF) subscale. Lastly, gender differences were found in the External-Oriented Thinking (EOT) subscale. Overall, our findings evidence that PE has positive effects on cognitive functioning and emotion regulation, suggesting how sports practice can promote mental health and wellbeing

    The kinectome: A comprehensive kinematic map of human motion in health and disease

    Get PDF
    Human voluntary movement stems from the coordinated activations in space and time of many musculoskeletal segments. However, the current methodological approaches to study human movement are still limited to the evaluation of the synergies among a few body elements. Network science can be a useful approach to describe movement as a whole and to extract features that are relevant to understanding both its complex physiology and the pathophysiology of movement disorders. Here, we propose to represent human movement as a network (that we named the kinectome), where nodes represent body points, and edges are defined as the correlations of the accelerations between each pair of them. We applied this framework to healthy individuals and patients with Parkinson’s disease, observing that the patients’ kinectomes display less symmetrical patterns as compared to healthy controls. Furthermore, we used the kinectomes to successfully identify both healthy and diseased subjects using short gait recordings. Finally, we highlighted topological features that predict the individual clinical impairment in patients. Our results define a novel approach to study human movement. While deceptively simple, this approach is well-grounded, and represents a powerful tool that may be applied to a wide spectrum of framework

    Topological changes of brain network during mindfulness meditation: an exploratory source level magnetoencephalographic study

    Get PDF
    We have previously evidenced that Mindfulness Meditation (MM) in experienced meditators (EMs) is associated with long-lasting topological changes in resting state condition. However, what occurs during the meditative phase is still debated. Utilizing magnetoencephalography (MEG), the present study is aimed at comparing the topological features of the brain network in a group of EMs (n = 26) during the meditative phase with those of individuals who had no previous experience of any type of meditation (NM group, n = 29). A wide range of topological changes in the EM group as compared to the NM group has been shown. Specifically, in EMs, we have observed increased betweenness centrality in delta, alpha, and beta bands in both cortical (left medial orbital cortex, left postcentral area, and right visual primary cortex) and subcortical (left caudate nucleus and thalamus) areas. Furthermore, the degree of beta band in parietal and occipital areas of EMs was increased too. Our exploratory study suggests that the MM can change the functional brain network and provides an explanatory hypothesis on the brain circuits characterizing the meditative process

    Brain Networks and Cognitive Impairment in Parkinson's Disease

    Get PDF
    : Aim: The aim of the present study is to investigate the relationship between both functional connectivity and brain networks with cognitive decline, in patients with Parkinson's disease (PD). Introduction: PD phenotype is not limited to motor impairment but, rather, a wide range of non-motor disturbances can occur, with cognitive impairment being one of the most common. However, how the large-scale organization of brain activity differs in cognitively impaired patients, as opposed to cognitively preserved ones, remains poorly understood. Methods: Starting from source-reconstructed resting-state magnetoencephalography data, we applied the phase linearity measurement (PLM) to estimate functional connectivity, globally and between brain areas, in PD patients with and without cognitive impairment (respectively PD-CI and PD-NC), as compared with healthy subjects (HS). Further, using graph analysis, we characterized the alterations in brain network topology and related these, as well as the functional connectivity, to cognitive performance. Results: We found reduced global and nodal PLM in several temporal (fusiform gyrus, Heschl's gyrus, and inferior temporal gyrus), parietal (postcentral gyrus), and occipital (lingual gyrus) areas within the left hemisphere, in the gamma band, in PD-CI patients, as compared with PD-NC and HS. With regard to the global topological features, PD-CI patients, as compared with HS and PD-NC patients, showed differences in multi-frequencies bands (delta, alpha, gamma) in the Leaf fraction, Tree hierarchy (Th) (both higher in PD-CI), and Diameter (lower in PD-CI). Finally, we found statistically significant correlations between the Montreal Cognitive Assessment test and both the Diameter in delta band and the Th in the alpha band. Conclusion: Our work points to specific large-scale rearrangements that occur selectively in cognitively compromised PD patients and are correlated to cognitive impairment. Impact statement In this article, we want to test the hypothesis that the cognitive decline observed in Parkinson's disease (PD) patients may be related to specific changes of both functional connectivity and brain network topology. Specifically, starting from magnetoencephalography signals and by applying the phase linearity measurement (PLM), a connectivity metric that measures the synchronization between brain regions, we were able to highlight differences in the global and nodal PLM values in PD patients with cognitive impairment as compared with both cognitively unimpaired patients and healthy subjects. Further, using graph analysis, we analyzed alterations in brain network topology that were related to cognitive functioning

    Brain network topology and personality traits: A source level magnetoencephalographic study

    Get PDF
    Personality neuroscience is focusing on the correlation between individual differences and the efficiency of large-scale networks from the perspective of the brain as an interconnected network. A suitable technique to explore this relationship is the magnetoencephalography (MEG), but not many MEG studies are aimed at investigating topological properties correlated to personality traits. By using MEG, the present study aims to evaluate how individual differences described in Cloninger's psychobiological model are correlated with specific cerebral structures. Fifty healthy individuals (20 males, 30 females, mean age: 27.4 ± 4.8 years) underwent Temperament and Character Inventory examination and MEG recording during a resting state condition. High harm avoidance scores were associated with a reduced centrality of the left caudate nucleus and this negative correlation was maintained in females when we analyzed gender differences. Our data suggest that the caudate nucleus plays a key role in adaptive behavior and could be a critical node in insular salience network. The clear difference between males and females allows us to suggest that topological organization correlated to personality is highly dependent on gender. Our findings provide new insights to evaluate the mutual influences of topological and functional connectivity in neural communication efficiency and disruption as biomarkers of psychopathological traits
    corecore